• Aprenderly
  • Explore
    • Ciencia
    • Ciencias sociales
    • Historia
    • Ingeniería
    • Matemáticas
    • Negocio
    • Numeración de las artes

    Top subcategories

    • Advanced Math
    • Estadísticas y Probabilidades
    • Geometría
    • Trigonometry
    • Álgebra
    • other →

    Top subcategories

    • Astronomía
    • Biología
    • Ciencias ambientales
    • Ciencias de la Tierra
    • Física
    • Medicina
    • Química
    • other →

    Top subcategories

    • Antropología
    • Psicología
    • Sociología
    • other →

    Top subcategories

    • Economía
    • other →

    Top subcategories

    • Ciencias de la computación
    • Diseño web
    • Ingeniería eléctrica
    • other →

    Top subcategories

    • Arquitectura
    • Artes escénicas
    • Ciencias de la religión
    • Comunicación
    • Escritura
    • Filosofía
    • Música
    • other →

    Top subcategories

    • Edad Antigua
    • Historia de Europa
    • Historia de los Estados Unidos de América
    • Historia universal
    • other →
 
Sign in Sign up
Upload
ÁLGEBRA DE MATRICES - Matemáticas Online
ÁLGEBRA DE MATRICES - Matemáticas Online

Tema 1: Álgebra de Matrices
Tema 1: Álgebra de Matrices

Métodos numéricos
Métodos numéricos

métodos numéricos
métodos numéricos

Unidad 1 Álgebra de matrices
Unidad 1 Álgebra de matrices

MATRICES
MATRICES

Matrices 2013 - Álgebra en la Unsl
Matrices 2013 - Álgebra en la Unsl

(14-INV-186) Control de algoritmos bloque iterativos basados en el
(14-INV-186) Control de algoritmos bloque iterativos basados en el

1

Algoritmo de Levinson

El algoritmo de Levinson o de Levinson-Durbin es un algoritmo del álgebra lineal para calcular en forma recursiva la solución de una ecuación que involucra una matriz de Toeplitz. El costo computacional es de Θ(n2), una mejora considerable frente a la eliminación de Gauss-Jordan, cuyo costo es de Θ(n3).Hay algoritmos nuevos, llamados asintóticamente rápidos o a menudo algoritmos de Toeplitz superrápidos, que pueden resolver con un costo de Θ(n logpn) para varios p (por ejemplo, para p = 2, p = 3). La recursión de Levinson sigue siendo popular por distintas razones; por un lado, es relativamente simple de comprender en comparación; por otro lado, puede ser más rápida que un algoritmo superrápido para n pequeño (normalmente para n < 256 [1]).El algoritmo de Levinson-Durbin fue propuesto por primera vez por Norman Levinson en 1947, mejorado por J. Durbin en 1960 y más tarde mejorado a 4n2 y luego a 3n2 multiplicaciones por W. F. Trench y S. Zohar, respectivamente.Otros métodos para procesar datos incluyen la descomposición de Schur y la descomposición de Cholesky. En comparación a estos, la recursión de Levinson (particularmente la recursión de Split-Levinson) tiende a ser más rápida computacionalmente, aunque más sensible a imperfecciones computacionales como errores de redondeo.
El centro de tesis, documentos, publicaciones y recursos educativos más amplio de la Red.
  • aprenderly.com © 2025
  • GDPR
  • Privacy
  • Terms
  • Report