• Aprenderly
  • Explore
    • Ciencia
    • Ciencias sociales
    • Historia
    • Ingeniería
    • Matemáticas
    • Negocio
    • Numeración de las artes

    Top subcategories

    • Advanced Math
    • Estadísticas y Probabilidades
    • Geometría
    • Trigonometry
    • Álgebra
    • other →

    Top subcategories

    • Astronomía
    • Biología
    • Ciencias ambientales
    • Ciencias de la Tierra
    • Física
    • Medicina
    • Química
    • other →

    Top subcategories

    • Antropología
    • Psicología
    • Sociología
    • other →

    Top subcategories

    • Economía
    • other →

    Top subcategories

    • Ciencias de la computación
    • Diseño web
    • Ingeniería eléctrica
    • other →

    Top subcategories

    • Arquitectura
    • Artes escénicas
    • Ciencias de la religión
    • Comunicación
    • Escritura
    • Filosofía
    • Música
    • other →

    Top subcategories

    • Edad Antigua
    • Historia de Europa
    • Historia de los Estados Unidos de América
    • Historia universal
    • other →
 
Sign in Sign up
Upload
Solución
Solución

Grupos - Primera parte.
Grupos - Primera parte.

Guía de matemática de 2º A y B
Guía de matemática de 2º A y B

prácticas grupos - Universidad de Jaén
prácticas grupos - Universidad de Jaén

Ejercicio nº1 En el conjunto de los números naturales se define la
Ejercicio nº1 En el conjunto de los números naturales se define la

ACTIVIDAD ACADÉMICAMENTE DIRIGIDA. TEMA DE GRUPOS
ACTIVIDAD ACADÉMICAMENTE DIRIGIDA. TEMA DE GRUPOS

1

Subgrupo



En álgebra, dado un grupo G con una operación binaria *, se dice que un subconjunto no vacío H de G es un subgrupo de G si H también forma un grupo bajo la operación *. O de otro modo, H es un subgrupo de G si la restricción de * a H satisface los axiomas de grupo.Un subgrupo propio de un grupo G es un subgrupo H que es un subconjunto propio de G (es decir H ≠ G). El subgrupo trivial de cualquier grupo es el subgrupo {e} que consiste solamente en el elemento identidad.El grupo G a veces se denota por el par ordenado (G, *), generalmente para acentuar la operación * cuando G lleva varias estructuras algebraicas o de otro tipo. En lo siguiente, se sigue la convención usual y se escribe el producto a*b como simplemente ab.
El centro de tesis, documentos, publicaciones y recursos educativos más amplio de la Red.
  • aprenderly.com © 2026
  • GDPR
  • Privacy
  • Terms
  • Report