• Aprenderly
  • Explore
    • Ciencia
    • Ciencias sociales
    • Historia
    • Ingeniería
    • Matemáticas
    • Negocio
    • Numeración de las artes

    Top subcategories

    • Advanced Math
    • Estadísticas y Probabilidades
    • Geometría
    • Trigonometry
    • Álgebra
    • other →

    Top subcategories

    • Astronomía
    • Biología
    • Ciencias ambientales
    • Ciencias de la Tierra
    • Física
    • Medicina
    • Química
    • other →

    Top subcategories

    • Antropología
    • Psicología
    • Sociología
    • other →

    Top subcategories

    • Economía
    • other →

    Top subcategories

    • Ciencias de la computación
    • Diseño web
    • Ingeniería eléctrica
    • other →

    Top subcategories

    • Arquitectura
    • Artes escénicas
    • Ciencias de la religión
    • Comunicación
    • Escritura
    • Filosofía
    • Música
    • other →

    Top subcategories

    • Edad Antigua
    • Historia de Europa
    • Historia de los Estados Unidos de América
    • Historia universal
    • other →
 
Sign in Sign up
Upload
anillos reales - Visualización de objetos geométricos
anillos reales - Visualización de objetos geométricos

PDF - Universidad Nacional de Colombia
PDF - Universidad Nacional de Colombia

ACEVEDO, E. A. Propiedades topológicas de la línea Khalimsky.
ACEVEDO, E. A. Propiedades topológicas de la línea Khalimsky.

VOL.10, Num. 1 - Intermat
VOL.10, Num. 1 - Intermat

1

Topología de Aleksándrov

En matemática, a cualquier preorden se le puede dar la estructura de un espacio topológico, declarando abierto cualquier sección final (conjunto superior). Se puede demostrar que cualquier topología «fina» viene de ésa debido al (pre)orden de especialización y, entre tales espacios, una función es continua si y solamente si es monótona.Esto contesta a una buena pregunta: si toda intersección (no sólo las intersecciones finitas) de conjuntos abiertos es abierta. Respuesta: esta topología es de Alexandrov (también escrito Alexandroff), en honor a Pável Aleksándrov, quien fue el primero en estudiarlas.Es importante notar que no hay topologías finitas, solamente sus preórdenes de especialización!. Lo que a su vez significa (por el teorema de inmersión de Henkin) que preorden es el lenguaje de primer ""orden"" (en sentido lógico) de la topología (pero esto significa: la topología no es de primer ""orden"" (en sentido lógico)). Paradigmático es el Espacio de Sierpiński. Pero los límites (infinitos) de estos espacios finitos son los espacios espectrales.
El centro de tesis, documentos, publicaciones y recursos educativos más amplio de la Red.
  • aprenderly.com © 2025
  • GDPR
  • Privacy
  • Terms
  • Report