• Aprenderly
  • Explore
    • Ciencia
    • Ciencias sociales
    • Historia
    • Ingeniería
    • Matemáticas
    • Negocio
    • Numeración de las artes

    Top subcategories

    • Advanced Math
    • Estadísticas y Probabilidades
    • Geometría
    • Trigonometry
    • Álgebra
    • other →

    Top subcategories

    • Astronomía
    • Biología
    • Ciencias ambientales
    • Ciencias de la Tierra
    • Física
    • Medicina
    • Química
    • other →

    Top subcategories

    • Antropología
    • Psicología
    • Sociología
    • other →

    Top subcategories

    • Economía
    • other →

    Top subcategories

    • Ciencias de la computación
    • Diseño web
    • Ingeniería eléctrica
    • other →

    Top subcategories

    • Arquitectura
    • Artes escénicas
    • Ciencias de la religión
    • Comunicación
    • Escritura
    • Filosofía
    • Música
    • other →

    Top subcategories

    • Edad Antigua
    • Historia de Europa
    • Historia de los Estados Unidos de América
    • Historia universal
    • other →
 
Sign in Sign up
Upload
estudios sobre la economia española
estudios sobre la economia española

CONTENIDO CONCEPTUAL…
CONTENIDO CONCEPTUAL…

Nueva Evidencia Empírica sobre las Turbulencias Cambiarias de la
Nueva Evidencia Empírica sobre las Turbulencias Cambiarias de la

Estadística I - FAE
Estadística I - FAE

estadística aplicada a la economía y administración ii
estadística aplicada a la economía y administración ii

análisis de la tasa de desempleo de la economía argentina y
análisis de la tasa de desempleo de la economía argentina y

Incertidumbre sobre la Persistencia de Choques
Incertidumbre sobre la Persistencia de Choques

1

Modelo oculto de Márkov



Un modelo oculto de Márkov o HMM (por sus siglas del inglés, Hidden Markov Model) es un modelo estadístico en el que se asume que el sistema a modelar es un proceso de Márkov de parámetros desconocidos. El objetivo es determinar los parámetros desconocidos (u ocultos, de ahí el nombre) de dicha cadena a partir de los parámetros observables. Los parámetros extraídos se pueden emplear para llevar a cabo sucesivos análisis, por ejemplo en aplicaciones de reconocimiento de patrones. Un HMM se puede considerar como la red bayesiana dinámica más simple.En un modelo de Márkov normal, el estado es visible directamente para el observador, por lo que las probabilidades de transición entre estados son los únicos parámetros. En un modelo oculto de Márkov, el estado no es visible directamente, sino que sólo lo son las variables influidas por el estado. Cada estado tiene una distribución de probabilidad sobre los posibles símbolos de salida. Consecuentemente, la secuencia de símbolos generada por un HMM proporciona cierta información acerca de la secuencia de estados.Los modelos ocultos de Márkov son especialmente aplicados a reconocimiento de formas temporales, como reconocimiento del habla, de escritura manual, de gestos, etiquetado gramatical o en bioinformática. En el reconocimiento de voz se emplea para modelar una frase completa, una palabra, un fonema o trifonema en el modelo acústico. Por ejemplo la palabra ""gato"" puede estar formada por dos HMM para los dos trifonemas que la componen /gat/ y /ato/
El centro de tesis, documentos, publicaciones y recursos educativos más amplio de la Red.
  • aprenderly.com © 2025
  • GDPR
  • Privacy
  • Terms
  • Report