• Aprenderly
  • Explore
    • Ciencia
    • Ciencias sociales
    • Historia
    • Ingeniería
    • Matemáticas
    • Negocio
    • Numeración de las artes

    Top subcategories

    • Advanced Math
    • Estadísticas y Probabilidades
    • Geometría
    • Trigonometry
    • Álgebra
    • other →

    Top subcategories

    • Astronomía
    • Biología
    • Ciencias ambientales
    • Ciencias de la Tierra
    • Física
    • Medicina
    • Química
    • other →

    Top subcategories

    • Antropología
    • Psicología
    • Sociología
    • other →

    Top subcategories

    • Economía
    • other →

    Top subcategories

    • Ciencias de la computación
    • Diseño web
    • Ingeniería eléctrica
    • other →

    Top subcategories

    • Arquitectura
    • Artes escénicas
    • Ciencias de la religión
    • Comunicación
    • Escritura
    • Filosofía
    • Música
    • other →

    Top subcategories

    • Edad Antigua
    • Historia de Europa
    • Historia de los Estados Unidos de América
    • Historia universal
    • other →
 
Sign in Sign up
Upload
esús Francisco Espinoza Fierro
esús Francisco Espinoza Fierro

j - Casanchi
j - Casanchi

1

Orbifold

En topología, orbifold (Orbidad u orbivariedad) es generalización de variedad diferenciable, consistente en un espacio topológico (llamado espacio subyacente) con una estructura de orbifold (véase abajo). El espacio subyacente localmente parece un cociente de un espacio euclídeo bajo la acción de un grupo finito de isometrías. El ejemplo principal del espacio subyacente es un espacio cociente de una variedad bajo la acción de un grupo finito de difeomorfismos. En particular, una variedad con borde lleva una estructura natural de orbifold, puesto que es Z2-factor de su doblado. Un espacio factor de una variedad a lo largo de una S1-acción diferenciable sin puntos fijos lleva estructura de orbifold (éste no es un caso particular del ejemplo principal). La estructura de orbifold da una estratificación natural para las variedades abiertas en su espacio subyacente, donde cada estrato corresponde a un conjunto de puntos singulares del mismo tipo.Debe ser observado que un espacio topológico puede llevar muchas estructuras de orbifold diversas. Por ejemplo, considere O el orbifold asociado a un espacio factor de la 2-esfera a lo largo de una rotación de π, es homeomorfo a la 2-esfera, pero la estructura natural de orbifold es diferente.Es posible adoptar la mayoría de las propiedades de variedades a los orbifolds y estas propiedades son generalmente diferentes de las propiedades correspondientes del espacio subyacente. En el ejemplo antedicho, su grupo fundamental de orbifold es Z2 y su característica euleriana de orbifold es 1.
El centro de tesis, documentos, publicaciones y recursos educativos más amplio de la Red.
  • aprenderly.com © 2025
  • GDPR
  • Privacy
  • Terms
  • Report