Download teoría - Yo quiero aprobar

Document related concepts

Grado (polinomio) wikipedia , lookup

Monomio wikipedia , lookup

Álgebra elemental wikipedia , lookup

Coeficiente (matemáticas) wikipedia , lookup

Anillo de polinomios wikipedia , lookup

Transcript
MATEMÁTICAS 2º ESO
IES LA ASUNCIÓN http://www.ieslaasuncion.org
Bloque II. Álgebra. Tema 7: Polinomios
TEORÍA
1. E L ÁLGEBRA : ¿ PARA QUÉ SIRVE ?
Llamamos álgebra a la parte de las matemáticas en la que se utilizan letras para
expresar números de valor desconocido o indeterminado.
El lenguaje algebraico facilita la construcción de los procesos matemáticos.
Ejemplo: En la imagen de la izquierda.
¿Qué representa la expresión algebraica
x  500
?
30
A continuación, se exponen algunas de las aplicaciones del álgebra:
1) Para expresar propiedades de las operaciones aritméticas.
Ejemplo: la propiedad distributiva dice "el producto de un número por una suma es igual a la suma de
los productos parciales del número por cada sumando" que en lenguaje algebraico sería
a  (b  c)  a  b  a  c
2) Para expresar la relación entre variables relativas a distintas magnitudes (fórmulas).
Ejemplo: en un tema anterior demostramos la fórmula del interés bancario simple
I  cr t
3) Para manejar números de valor indeterminado y sus operaciones (expresiones algebraicas).
Ejemplo 1: "el doble del siguiente número" sería la expresión algebraica
Ejemplo 2: "el cuadrado del número más el triple del número" sería
2  ( x  1)
x2  3  x
4) Para expresar relaciones que facilitan la resolución de problemas (ecuaciones).
Ejemplo: Laura gasta la mitad de su paga en el cine y la tercera parte en un bocadillo. Así, solo le
quedan dos euros. ¿Cuánto tenía de paga?.
Para resolver el problema planteamos una ecuación. La incógnita es lo que recibe Laura de paga y la
llamamos "x" .
x x
 2 x
2
3
Entonces "x" tiene que verificar la ecuación
.
En el tema siguiente aprenderás a resolver ecuaciones.
Comprueba que la solución es
x  12 €
ERV 1 al 22
–1–
IES LA ASUNCIÓN http://www.ieslaasuncion.org
MATEMÁTICAS 2º ESO
Bloque II. Álgebra. Tema 7: Polinomios
TEORÍA
2. E XPRESIONES ALGEBRAICAS
¿Qué es? Una expresión algebraica es un conjunto de números y letras unidos entre sí por las operaciones de sumar,
restar, multiplicar, dividir y por paréntesis.
Ejemplos:
3  2  x2  x
x  y  32  ( x  y 2  y ) son dos expresiones algebraicas.
o
El signo de multiplicar se sobreentiende delante de una letra o un paréntesis.
Los ejemplos anteriores los escribiremos así:
3  2x2  x
o
xy  32( xy 2  y )
Empecemos estudiando las más sencillas: los monomios.
3. M ONOMIOS
¿Qué son? Un monomio es una expresión algebraica formada por el producto de un número y una o más variables. Al
número lo llamaremos coeficiente y al conjunto de las variables, parte literal.
Llamaremos grado del monomio a la suma de los exponentes de su parte literal y grado respecto de una variable, al
exponente de esa variable.
Ejemplo 1: El monomio
3a tiene como coeficiente "3", parte literal "a" y es de grado "1".
Ejemplo 2: El monomio
2 2
2
xy tiene como coeficiente " ", parte literal " xy 2 ", es de grado "3" y el
3
3
grado respecto la variable "y" es "2".
Se dice que dos monomios son semejantes cuando tienen la parte literal idéntica
Ejemplo 1: Los monomios " 3a
"a
2
2
b " y " 7a 2b " son semejantes porque tienen la misma parte literal
b ".
Ejemplo 2: Los monomios " 3ab " y " 7 a
2
b " no son semejantes porque no tienen la misma parte literal.
Suma de monomios:
Dos monomios solo se pueden sumar si son semejantes. En ese caso, se suman los coeficientes, dejando la misma parte
literal.
Si los monomios no son semejantes, la suma queda indicada y esta operación no puede expresarse de manera más
simplificada.
El siguiente ejemplo con peras y manzanas puede aclararte cuando dos monomios se pueden sumar:
3
+2
=5
pero en cambio 3
+2
no es igual a 5 peras ni a 5 manzanas
Ejemplos:
5a  2 a  7 a
2
c) 3 x  2 x no puede simplificarse
8 x 2  3x 2  5 x 2
2
2
2
d) a  a  a  2a  a
a)
b)
Multiplicación de monomios.
El producto de dos monomios es un monomio que tiene por coeficiente el producto de los coeficientes y por parte literal el
producto de las partes literales (recuerda la propiedad: a m  a n  a m  n ).
–2–
IES LA ASUNCIÓN http://www.ieslaasuncion.org
MATEMÁTICAS 2º ESO
Bloque II. Álgebra. Tema 7: Polinomios
TEORÍA
Ejemplos:
a) Multiplica los monomios " 3a
2
b " y " 2a ". Es (3a 2 b)  (2a )  (3  2)a 2 ba  6a 2 1b  6a 3 b
b)
 15 2  3 2
5
5
5
(3x 2 )  ( x 3 y 2 )  (3  ) x 2 x 3 y 2 
x y   x5 y 2
6
6
6
2
c)
(2 x 4 y ) 3  (2 x 4 y )  ( 2 x 4 y )  (2 x 4 y )  (2 3 ) x 4 yx 4 yx 4 y  2 3 x 12 y 3  8 x 12 y 3 o bien
(2 x 4 y ) 3  2 3 ( x 4 ) 3 y 3  2 3 x 12 y 3  8 x 12 y 3
División de monomios.
El cociente de dos monomios puede ser un número, otro monomio o una fracción algebraica.
Ejemplos:
6a 2b 6
  2 (un número)
3a 2b 3
6 x5 y 3  2  x3 x 2 y 2 2
5
3
b) (6 x y ) : (15 x ) 

 x y (un monomio)
5
15 x 3
3  5  x3
5
3 2
6x y 3  2  x x y
x2
5
3 2
c) (6 x y ) : ( 2 x y ) 


3
(es una fracción algebraica pero no un monomio)
y
2x3 y 2
2  x3 y y
a)
(6a 2b) : (3a 2b) 
ERV 23 al 26
4. P OLINOMIOS
¿Qué son? Un polinomio es la suma de varios monomios no semejantes también llamados términos del polinomio.
Los coeficientes del polinomio son los números que multiplican a cada monomio.
Si uno de los monomios no tiene parte literal se llama término independiente.
El mayor grado de todos los monomios se llama grado del polinomio.
Nombramos los polinomios con una letra mayúscula y entre paréntesis las variables que lo integran.
Ejemplo 1: El polinomio P ( x )  x  2 x  4 tiene una variable (la "x"), es de grado 5, los coeficientes
son el 1, el 2 y el –4 y el término independiente es –4.
Este polinomio también se llama trinomio porque tiene tres monomios o términos.
5
Ejemplo 2: El polinomio Q ( a, b)  4a b  5a tiene dos variables ( la "a" y la "b"), es de grado 3, los
coeficientes son 4 y –5, no hay término independiente.
Este polinomio también se llama binomio porque tiene dos monomios o términos.
2
El valor numérico de un polinomio es el valor que se obtiene al sustituir la variables o variables por números concretos y
efectuar las operaciones.
Los números cuyo valor numérico en el polinomio es cero se llaman raíces del polinomio.
Ejemplo 1: Dado el polinomio
P ( x)  x 2  5 x  6 , el valor numérico para x  1 es el número
P (1)  (1) 2  5  (1)  6  12 y para x  2 el valor numérico es P (2)  (2) 2  5  ( 2)  6  0 .
Observa que el número "2" es una raíz del polinomio
Ejemplo 2: Dado el polinomio
número
P ( x)  x 2  5 x  6 .
Q ( x, y )  3 x 2 y  5 x  6 y , el valor numérico para x  2 , y  1 es el
Q(2,1)  3  2 2  (1)  5  2  6  (1)  12  10  6  28 .
–3–
MATEMÁTICAS 2º ESO
IES LA ASUNCIÓN http://www.ieslaasuncion.org
Bloque II. Álgebra. Tema 7: Polinomios
TEORÍA
ERV 27 al 30
5. S UMA Y RESTA DE POLINOMIOS
Para sumar dos o más polinomios o bien restar dos polinomios tendremos en cuenta lo que ya sabemos sobre la suma y
resta de monomios.
Ejemplo 1: Dados los polinomios
su suma:
A  2 x 3  3 x 2  6 y B  x 2  5 x  4 de una sola variable, halla
Es A  B  ( 2 x  3 x  6)  ( x  5 x  4)  2 x  3 x  6  x  5 x  4  2 x  2 x  5 x  10
(hemos sumado los monomios semejantes.
También se puede sumar colocando los polinomios uno debajo del otro, haciendo coincidir, en la misma
columna, los monomios semejantes. Observa la imagen
3
2
Ejemplo 2: Dados los polinomios
resta A  B :
2
3
2
2
3
2
A  2 x 3  3 x 2  6 y B  x 2  5 x  4 de una sola variable, halla la
Es A  B  ( 2 x  3 x  6)  ( x  5 x  4)  2 x  3 x  6  x  5 x  4  2 x  4 x  5 x  2 (el
signo menos delante del paréntesis cambia de signo todos los términos del polinomio B; después hemos
sumado los monomios semejantes).
También se puede sumar colocando los polinomios uno debajo del otro, haciendo coincidir, en la misma
columna, los monomios semejantes y cambiando de signo los término del sustraendo. Observa la
imagen
3
2
2
3
2
2
3
2
6. P RODUCTO DE POLINOMIOS
6.1. P RODUCTO DE UN POLINOMIO POR UN NÚMERO
Recuerda que para multiplicar un número por una suma, debemos multiplicar el número por cada sumando.
Es la propiedad distributiva a  (b  c)  a  b  a  c
Ejemplo:
5  (2 x 3  3x  4)  10 x 3  15 x  20
6.2. P RODUCTO DE UN POLINOMIO POR UN MONOMIO
Observa el siguiente ejemplo en el que se vuelve a aplicar la propiedad distributiva.
Ejemplo:
5 x 2  (2 x 3  3x  4)  10 x 5  15 x 3  20 x 2
6.3. P RODUCTO DE DOS POLINOMIOS
Combinando los productos de un polinomio por un número y por un monomio, como hemos visto más arriba, podemos
calcular el producto de dos polinomios.
Para calcular el producto de dos polinomios, se multiplica cada monomio de uno de los factores por todos y cada uno de los
monomios del otro factor y se suman los monomios obtenidos, reduciendo los que sean semejantes.
–4–
IES LA ASUNCIÓN http://www.ieslaasuncion.org
Bloque II. Álgebra. Tema 7: Polinomios
Ejemplo: Realiza el producto
MATEMÁTICAS 2º ESO
TEORÍA
( x 3  4 x 2  5 x  1)  ( x 2  3x  2)
En el próximo curso estudiarás la división de polinomios.
ERV 30 al 35
7. P RODUCTOS NOTABLES
Llamamos productos notables a ciertos productos de binomios cuya memorización resulta útil
para abreviar los cálculos con expresiones algebraicas.
7.1. C UADRADO DE UNA SUMA
Se verifica (a  b) 2  a 2  2ab  b 2 . Para demostrarlo basta multiplicar:
(a  b) 2  (a  b)  (a  b)  a 2  ab  ba  b 2  a 2  2ab  b 2 pues es ab  ba
Se lee: "El cuadrado de una suma es igual ... al cuadrado del primer sumando .... más el
doble del primero por el segundo ... más el cuadrado del segundo".
Ejemplo 1:
( x  3) 2  x 2  2  x  3  32  x 2  6 x  9
Ejemplo 2:
(2  3 x) 2  2 2  2  2  3x  (3 x) 2  4  12 x  9 x 2
Interpretación gráfica del
cuadrado de la suma
7.2. C UADRADO DE UNA DIFERENCIA
Se verifica (a  b) 2  a 2  2ab  b 2 . Para demostrarlo basta multiplicar:
(a  b) 2  (a  b)  (a  b)  a 2  ab  ba  b 2  a 2  2ab  b 2 pues es ab  ba
Se lee: "El cuadrado de una diferencia es igual ... al cuadrado del primer sumando .... menos el doble del primero por el
segundo ... más el cuadrado del segundo."
Ejemplo 1:
( x  1) 2  x 2  2  x 1  12  x 2  2 x  1
Ejemplo 2:
( x 2  3 x) 2  ( x 2 ) 2  2  x 2  3 x  (3x) 2  x 4  6 x 3  9 x 2
7.3. S UMA POR DIFERENCIA
Se verifica (a  b)  ( a  b)  a 2  b 2 . Para demostrarlo basta multiplicar:
(a  b)  (a  b)  a 2  ab  ba  b 2  a 2  b 2
–5–
MATEMÁTICAS 2º ESO
IES LA ASUNCIÓN http://www.ieslaasuncion.org
Bloque II. Álgebra. Tema 7: Polinomios
TEORÍA
Se lee: "La suma de dos monomios por su diferencia es igual a la diferencia de los cuadrados"
Ejemplo 1:
( x  2)  ( x  2)  x 2  2 2  x 2  4
Ejemplo 2:
(3  4 x)  (3  4 x)  32  (4 x) 2  9  16 x 2
ERV 36 al 38
8. A PLICACIONES DE LOS PRODUCTOS NOTABLES
Los productos notables se aplican, entre otras situaciones de cálculo, en la descomposición de polinomios en factores y en
la simplificación de fracciones algebraicas.
Ejemplos:
9. E XTRACCIÓN DE FACTOR COMÚN
Consiste en aplicar la propiedad distributiva pero al revés de como la utilizamos cuando multiplicamos, es decir:
p  a  p  b  p  c    p  (a  b  c  )
El monomio " p " que se extrae tiene como coeficiente el MCD de los coeficientes y como parte literal, las variables
comunes elevadas al menor exponente.
Ejemplos:
a)
3x  3 y  3 ( x  y)
d)
12 x 2  4 x  4 x (3 x  1) e) 12 x 3  4 x 2  x  x (12 x 2  4 x  1) f) 6 x 2 y  9 xy 2  3xy ( 2 x  3 y )
b)
6 x 2  8 x  2 x (3x  4)
–6–
c)
12 x 3  18 x 2  6 x 2 ( 2 x  3)
IES LA ASUNCIÓN http://www.ieslaasuncion.org
Bloque II. Álgebra. Tema 7: Polinomios
MATEMÁTICAS 2º ESO
TEORÍA
La extracción de factor común se emplea, entre otras situaciones de cálculo, en la descomposición de polinomios en
factores y en la simplificación de fracciones algebraicas.
Ejemplos:
ERV 38 al 41
–7–
IES LA ASUNCIÓN http://www.ieslaasuncion.org
MATEMÁTICAS 2º ESO
Bloque II. Álgebra. Tema 7: Polinomios
Ejercicios resueltos en http://www.aprendermatematicas.org/
TEORÍA Y EJERCICIOS
El álgebra. Expresiones algebraicas. Monomios. Polinomios
1. (1º ESO) a) ¿Qué es el álgebra?. ¿Qué es la aritmética? Propón un problema aritmético y uno algebraico.
b) ¿Cuál es la propiedad distributiva del producto respecto de la suma?. ¿Conoces alguna propiedad más de los números
enteros?
c) ¿Cuál es la diferencia entre una expresión algebraica, una igualdad algebraica y una ecuación algebraica? Propón
ejemplos de cada caso.
2.
(1º ESO) Escribe en lenguaje algebraico las siguientes expresiones:
a) Tenía x € y me han dado 23 €. ¿Cuántos euros tengo ahora?
b) El lado de un cuadrado mide x metros. ¿Cuánto mide el perímetro?
c) El lado de tres cuadrados iguales mide x metros. ¿Cuál es el área de los 3 cuadrados?
d) El doble del número x.
e) El doble de x más cinco.
f) El doble del resultado de sumarle cinco a x.
g) La mitad del número x.
h) La mitad de x menos cinco.
i) La mitad del resultado de restarle cinco a x.
j) La distancia recorrida en x horas por un camión que va a 60 km/h.
k) El coste de x kilos de peras que están a 0,80 €/kg.
l) El área de un triángulo de base 0,80 m y altura x metros.
m) La edad de Pedro, siendo x la de su abuelo, que tenía 60 años cuando nació Pedro.
3. Escribe en lenguaje algebraico las siguientes expresiones:
a) Mi paso es de 69 cm. ¿Cuántos pasos daré para dar tres vueltas a un circuito de "a" metros?
b) Si hace tres horas estaba en el kilómetro 26 de una carretera y voy a una velocidad media de x km/h ¿En qué punto
kilométrico me encuentro de la misma carretera?
4. Llamando x a un número cualquiera, escribe una expresión algebraica para cada uno de los siguientes enunciados:
a) El triple de x.
b) La mitad de su anterior.
c) El resultado de sumarle tres unidades.
d) La mitad de un número tres unidades mayor que x.
e) El triple del número que resulta de sumar a x cinco unidades.
f) Un número 5 unidades mayor que el triple de x.
5. Llamando x a un número, expresa en lenguaje algebraico:
a) Su doble.
b) El siguiente de su doble.
c) El doble de su siguiente.
d) El triple de su mitad.
6. En una granja hay C caballos, V vacas y G gallinas. Asocia cada una de estas expresiones al número de:
a) Patas
b) Cabezas
c) Orejas
d) Picos más alas
1ª) 2C+2V
2ª) C+V+G
3ª) 4(C+V)+2G 4ª) 3G
7. Llamando "x" al sueldo mensual de un trabajador, expresa algebraicamente:
a) El valor de una paga extraordinaria, sabiendo que equivale al 80% del sueldo.
b) Su nómina de diciembre, mes en el que percibe una paga extraordinaria.
c) Sus ingresos anuales, sabiendo que cobra dos pagas extras: en verano y en Navidad.
–8–
MATEMÁTICAS 2º ESO
IES LA ASUNCIÓN http://www.ieslaasuncion.org
Bloque II. Álgebra. Tema 7: Polinomios
Ejercicios resueltos en http://www.aprendermatematicas.org/
8. Copia y completa la tabla, atendiendo a los enunciados:
Mi salario mensual.
x€
El salario que tendré cuando sea especialista. Entonces cobraré trescientos euros más.
El salario de un compañero con jornada reducida, que es las tres quintas partes del mío.
El salario de un jefe de grupo que cobra un 20% más que yo.
El salario de un aprendiz que es...
9.
(x–400) €
(1º ESO) Lee y completa la tabla.
* El sueldo mensual de Pablo es de x euros.
* El gerente de la empresa gana el doble que Pablo.
* El ingeniero jefe gana 400 € menos que el gerente.
* El señor López gana un 10% menos que Pablo.
* Al señor de la limpieza le faltan 80 € para ganar la tres cuartas partes del sueldo de Pablo.
Empleado
Pablo
Gerente
Ingeniero
Sr. López
Sr. Limpieza
x
10. (1º ESO) Copia y completa la tabla, atendiendo a los siguientes enunciados:
* Cristina tiene x años.
* Alberto, su esposo, tiene 3 años más.
* Javier, su padre, le dobla la edad.
* Marta, su madre, tiene 5 años menos que su padre.
* Loli y Mar son sus hijas gemelas. Las tuvo con 26 años.
* Javi, el pequeño, tiene la mitad de años que las gemelas.
Cristina
Edad
Alberto
Javier
Marta
Loli y Mar
Javi
x
11. Traduce en tu cuaderno a lenguaje algebraico las edades de los miembros de esta familia:
Sara tiene x años.
x
Rosa (hermana mayor) le saca 2 años a Sara.
Ana (madre) tenía 25 años cuando Sara nació.
Joaquín (padre) cuadruplica la edad de Sara.
Teniendo en cuenta a la familia, escribe una igualdad (ecuación) que refleje este nuevo dato: "El padre de Sara tiene 5 años
más que la madre" y calcula por tanteo la edad de Sara.
12. Traduce a una igualdad algebraica (ecuación) cada uno de estos enunciados:
a) Si aumentas un número, x, en 15 unidades y divides entre dos el resultado, obtienes el triple de dicho número. Calcula
por tanteo el valor del número "x" (has resuelto la ecuación por tanteo).
b) Si triplicas la edad de Jorge, x, y al resultado le sumas 5 años, obtienes la edad de su padre, que tenía 33 años cuando
nació Jorge. Calcula por tanteo la edad "x" de Jorge (has resuelto la ecuación por tanteo).
–9–
MATEMÁTICAS 2º ESO
IES LA ASUNCIÓN http://www.ieslaasuncion.org
Bloque II. Álgebra. Tema 7: Polinomios
Ejercicios resueltos en http://www.aprendermatematicas.org/
13. Un trabajador cobra un sueldo base, "B", más 16 euros por cada hora extra. A todo ello se le descuenta un 18% de IRPF. El
resultado es el sueldo neto, "S". Si "n" es el número de horas extra que ha hecho en un mes, ¿cuál, o cuáles, de estas
expresiones sirven para calcular el sueldo neto?
a) S  B  16n  18
b) S  ( B  16n)  0,82
c) S 
18  ( B  16n)
100
14. ¿Cuál de las siguientes expresiones representa...
a) ... un número de tres cifras abc
b) ...su siguiente?
c) ...su doble?
d) ...el doble de su anterior?
1) 100a  10b  (c  1)
2) 200a  20b  2c
3) 200a  20b  2c  2
4) 100a 10b  c
15. En un campo de cultivo hay cuatro estanques. Llamando C a la cantidad de agua que tendrá un estanque dentro de m
minutos, asocia cada estanque con la expresión que le corresponde.
Estanque M: Contiene 4 500 litros de agua y se abre un grifo que le aporta 4 litros por minuto.
Estanque N: Contiene 4500 litros de agua y se le conecta una bomba que extrae 4 litros por minuto.
Estanque P: Contiene 40 metros cúbicos de agua y se conecta a una tubería que aporta 4,5 metros cúbicos a la hora.
Estanque Q: Contiene 40 metros cúbicos de agua y se abre una boca de riego que extrae 4,5 metros cúbicos a la hora.
a) C  40000 
4500  m
60
b) C  4500  4m
c) C  40000 
4500  m
60
d) C  4500  4  m
16. En la clase de Marta, la nota de matemáticas se calcula atendiendo a tres conceptos con diferente peso: la media de los
controles (3/4), el cuaderno (20%) y los trabajos especiales (resto).
a) ¿Cuál o cuáles de estas fórmulas sirven para calcular la nota?
Controles (a); Cuaderno (b); Trabajos especiales (c).
a) N 
b)
3a b c
 
4 5 20
b) N  0,75a  0,2b  0,05c
c) N 
15a  4b  c
20
d) N 
75a  20b  5c
100
Calcula la nota de Marta y de Javier, con dos cifras decimales.
Media controles Cuaderno Trabajos especiales
Marta
7,25
8
6
Javier
6,80
7
5
c) Si el sistema informático de secretaría solo admite notas con números enteros, ¿cuáles serán las calificaciones
definitivas de Marta y Javier en matemáticas?
17. El importe bruto, I , sin IVA, del recibo de la luz de cierta compañía eléctrica se calcula según la fórmula:
I  F  ( LAC  LANT )  P
F son los gastos fijos y alquiler de equipos de medida (€)
LAC es la lectura actual (kWh).
LANT es la lectura anterior (kWh)
P es el precio del kWh (€/kWh)
a) Escribe la fórmula en su versión actualizada, si los gastos fijos son de 8,50 € y el kilovatio hora cuesta 0,80 €.
b) ¿Cuál de las siguientes sería la fórmula actualizada de la factura, en su formato final, incluyendo el 21% de IVA?
a) I 
8,50  ( LAC  LANT )  0,80  21
100
b) I  8,50  ( LAC  LANT )  0,801,21
c) I  8,50  ( LAC  LANT )  0,80  1,21
c) El empleado de la compañía eléctrica anterior leyó el mes pasado, en el contador de la vivienda de la familia Herranz,
2457 kWh, y este mes, 2516 kWh. ¿A cuánto asciende la factura de este mes?
–10–
MATEMÁTICAS 2º ESO
IES LA ASUNCIÓN http://www.ieslaasuncion.org
Bloque II. Álgebra. Tema 7: Polinomios
Ejercicios resueltos en http://www.aprendermatematicas.org/
18. Un fontanero que presta servicio a domicilio cobra, por acudir a una llamada, un fijo de 25 €, más el importe del material
utilizado, más 15 € por cada hora de trabajo. Y a todo ello se le añade el 21% de IVA.
Escribe la fórmula para obtener el importe de la factura (I), en función de las horas invertidas (h) y el coste del material
(M).
19. El sueldo mensual bruto, el IRPF y el sueldo neto de los empleados de una empresa se calculan con las siguientes fórmulas,
sabiendo que "a" es la antigüedad (años) y "b" es el nº de horas extraordinarias:
S B  900  3a  10b
IRPF  0,15  S B
S N  0,85  S B
a) ¿Cuánto cobrará este mes un trabajador con 8 años de antigüedad y que tiene acumuladas 21 horas extra?
b) ¿Cuánto le retendrán por el IRPF?
20. Escribe los cinco primeros elementos de la serie de números cuyo término general es an 
3n  1
2
21. a) Halla la expresión algebraica que da las unidades del triple de un número de tres cifras abc ("a" son las centenas, "b" las
decenas y "c" las unidades).
b) Halla la expresión algebraica de un número par, de un número impar, de la suma de tres números pares consecutivos, de
un cuadrado perfecto, de un cubo perfecto.
c) Doblando un alambre de 40 cm formamos un rectángulo. Halla la expresión algebraica que define el área del rectángulo
de base "x" y calcula su valor para x=4.
22. Halla las expresiones algebraicas (fórmulas) que dan el perímetro y el área de cada figura:
a) Cuadrado
b) Rectángulo
c) Triángulo
d) Romboide
e) Rombo
f) Trapecio
g) Polígono regular
de n lados
h) Circunferencia
y círculo
Monomios. Operaciones con monomios
23. Copia en tu cuaderno y completa:
Monomio
a
 3x5
2 2
a b
5
Coeficiente
3
1/ 4
Parte
literal
x 2 yz 3
ab
Grado
24. Suma de monomios. Reduce todo lo posible:
a) b 3  b 3  b 3  b3
b) x  x
f) 5 x 2  3  4 x 2  1
e) 3 x  2  4  4 x
c) 4a  a
g) 4 x  1  4 x  4
–11–
d) 8 x  3x
h) 3 x  4  2 x 2
MATEMÁTICAS 2º ESO
IES LA ASUNCIÓN http://www.ieslaasuncion.org
Bloque II. Álgebra. Tema 7: Polinomios
Ejercicios resueltos en http://www.aprendermatematicas.org/
25. Producto de monomios. Haz las multiplicaciones siguientes:
 x2 
4x2  x2 
)  
b) (4a )  (5a 2 )
c) (6 x)   
d) (
a) (3x)  ( x)
3  2 
 2 
f) (3x)  (5 xy )
4 
h) (4ab)   b 
3 
g) (2ab)  (4ba 2 )
 1 
e) (5 x)    x 2 
 2 
3
 2ab   3a b 

j)  

 3   2 
 2   2 
i)   ab     ab 
 3   3 
26. Cociente de monomios. Haz las divisiones siguientes:
12 x 2
4x
5x
6x
b)
c)
d)
a)
2
10 x
4x
3x 2
e)
 6 x3
3x 2
f)
 5x
 5x3
g)
 128 x 2
32 x 2
Polinomios . Valor numérico de un polinomio.
27. (1º ESO) Define y propón ejemplos de:
a) Monomios.
b) Coeficiente, parte literal y grado de un monomio.
c) Monomios semejantes.
d) Polinomios y grado de un polinomio.
28. (1º ESO) Halla el valor numérico de las siguientes expresiones algebraicas para los valores que se indican:
2
3
2
a) 5 x  9 en x  2
b) x  9 x  1 en x  3
c) x  2 x  3x  2 en x  1
29. a) Halla el valor numérico del polinomio P ( x)   x 4  2 x  3 en x  0 , en x  2 , en x  1 , en x  1 .
b) Halla mentalmente el número que anula el binomio 2 x  16 (ese número se llama raíz del binomio).
c) Halla mentalmente los dos números que anulan el polinomio x 2  x  2 (esos números se llama raíces del polinomio y en
el tema posterior aprenderemos a calcularlos resolviendo una ecuación)
d) Halla el valor numérico del polinomio de dos variables P ( x, y )  4 x 2 y  3 y 3 para x  2; y  1
Operaciones con polinomios
30. Suma de polinomios. Completa:
b)
a)
c)
d)
31. Suma y resta de polinomios.
Dados los polinomios P ( x)  3x 3  5 x 2  3x  2 ; Q ( x)  2 x 3  4 x 2  x  3 ; R( x)  5 x 3  3x  5 , calcula:
d) P( x)  R( x)
e) P( x)  Q( x)  R ( x)
a) P ( x)  Q( x)
b) P( x)  Q ( x)
c) Q( x)  P( x)
32. Producto de polinomios. Haz las siguientes multiplicaciones:
a) 2  ( x 3  3 x 2  2 x  2) b) 3x 2  (5 x 2  4 x  1)
c) (2 x)  (5 x 2  3)
e) (2 x  1)  (2 x  5)
2
f) (3x  2)  ( x  3 x  2)
33. Reduce:
a) 2(3x  1)  3( x  2)  4 x  2
d) 3(4 x  3)  (2 x  5)  (24 x 2  5 x  2)
2
g) ( x  2)  ( x  3 x  1)
2
3
d) ( x  1)  (2 x  3)
h) ( x 2  2 x  3)  (2 x 3  5 x  1)
b) ( x  1)  ( 2 x  3)  2  ( x 2  1)
c) ( x  3)  (2 x  3)  (3x  2)  2 x
e) [3x  ( x 2  3x)  ( x  1)]  2 x  1
f) [3x  ( x 2  3 x)  ( x  1)]  2 x  1
34. Realiza las siguientes divisiones de polinomios entre monomios:
a) (8 x  8) : 2
b) (20 x  5) : 5
c) (3x 2  x) : x
–12–
d) (4 x 3  8 x 2 ) : 2 x
e) (12 x 3  4 x 2 ) : 3 x 2
MATEMÁTICAS 2º ESO
IES LA ASUNCIÓN http://www.ieslaasuncion.org
Bloque II. Álgebra. Tema 7: Polinomios
Ejercicios resueltos en http://www.aprendermatematicas.org/
35. (1º ESO) Operaciones con polinomios. Simplifica las expresiones algebraicas e indica el grado del polinomio resultante:
a) x  x
b) x  x
c) 5 x  3x
d) 4 x  (2 x  3x)
e) x  x
2
f) 3(2 x  1)  2 x  3
2
i) 3x  4 x
3
5
m) 3a  b b  b 2
j)
g) 5 x  3x  2 x  x
2


2
x  6x2 y
3
h) x  x
2
2
1
5
2
k) 12  10 3x  xy  
n) 4b3a  b   ab  4ab  4b
ñ)

5
l) 3xy 2  2 xy 2  5

3 2
x y  x 3  x xy  x 2  y  2 xy  5
2
Productos notables.
36. Calcula utilizando las fórmulas de los productos notables. Después comprueba el resultado realizando la operación:
a) ( x  3) 2
f) (5  3a)

3
c)   x 
2


b) (3  a) 2
5 3 
g)   a 
2 2 
2
2
d) (a  6) 2
e) (2 x  1) 2
i) (3 x  5)  (3 x  5)
3
3
j) ( x  5)  ( x  5)
4
4
2
h) ( x  5)  ( x  5)
37. Utilizando los productos notables, descompón en factores:
a) x 2  6 x  9
b) x 2  8 x  16
c) x 2  2 x  1
d) 4 x 2  4 x  1
e) x 2  4
f) 1  4 x 2
g) 4  9 x 4
Extraer factor común. Aplicaciones de los productos notables y de sacar factor común. WIRIS
38. Extrae factor común en cada uno de los siguientes polinomios:
d) 3a  6b
a) 4 x  4 y  4 z
b) 2 x  6 xy  3xz
c) a 2  3a
g) 9a  6a 2  3a 2
h) 2a 2  5a 3  a 4
i) 4 xy  6 y
j) 48 x 7  12
e) 2 x  4 y  6 z
f) 4 x  8 x 2  12 x 3
k) 4 x 3  4 x 2  3
l) 12 y  6 xy 2 z 2
39. Descompón en factores el numerador y el denominador utilizando los productos notables y extraer factor común y después
simplifica:
x2  9
x2  2x  1
2x2  6x
3x 2  6 x  3
5 x  15
3x  3
a) 2
b) 2
e)
f)
c)
d)
x  6x  9
3x 2  3
5x2  5x
2 x 3  12 x 2  16 x
5x2  5x
x  6x  9
40. Simplifica las fracciones de polinomios (fracciones algebraicas), si es posible:
x 2  3x
18 x  ( x  2)3  ( x  2)
2x  2
x
x  ( x  2)
b) 2
a)
c)
e)
d)
3x  3
x
2x  4
x  3x
6 x 2 ( x  2) 2
f)
18( x  2)3  2
6 x 2 ( x  2) 2
41. Utilizando el asistente matemático WIRIS realiza los siguientes cálculos:
a) Halla el valor numérico del polinomio P ( x)   x 4  2 x  3 en x  2 . Ayuda: escribe P(x) y luego P (2)
b) Dados los polinomios P ( x)  3x 3  5 x 2  3x  2 ; Q( x)  2 x 3  4 x 2  x  3 ; calcula: P( x)  Q( x) y P( x)  Q( x)
c) Simplifica [3x  ( x 2  3 x)  ( x  1)]  2 x  1
d) Desarrolla (5  3a) 2 .
e) Factoriza 4 x 2  4 x  1 . Ayuda: escribe factorizar (4 x 2  4 x  1)
f) Simplifica la fracción algebraica
18 x  ( x  2)3  ( x  2)
6 x 2 ( x  2) 2
–13–
IES LA ASUNCIÓN http://www.ieslaasuncion.org
MATEMÁTICAS 2º ESO
Bloque II. Álgebra. Tema 7: Polinomios
Ejercicios resueltos en http://www.aprendermatematicas.org/
SOLUCIONES:
1. (Ver vídeo)
2. (Ver vídeo)
3. a) 3a/0,69; b) 26+3x (Ver vídeo)
4. a) 3x; b) (x–1)/2; c) x+3; d) (x+3)/2; e) 3(x+5); f) 3x+5
(Ver vídeo)
5. a) 2x; b) 2x+1; c) 2(x+1) d) 3(x/2) (Ver vídeo)
6. 1-c; 2-b; 3-a; 4-d (Ver vídeo)
7. a) 0,8x; b) 1,8x; c) 13,6x (Ver vídeo)
8. (Ver vídeo)
9. (Ver vídeo)
10. (Ver vídeo)
11. Rosa: x+2; Madre: x+25; Padre: 4x; Ecuación:
4x=x+30; Edad Rosa: 10 años (Ver vídeo)
x  15
 3 x ; es x  3 ; b) 3x  5  x  33 ;
12. a)
2
x  19 años (Ver vídeo)
13. La b. (Ver vídeo)
14. a-4; b-1; c-2; d-3(Ver vídeo)
15. M-b; N-d; P-c; Q-a (Ver vídeo)
16. a) La b ó la d; b) Marta: 7,34; Javier: 6,75 c) Marta:7;
Javier: 7 (Ver vídeo)
17. a) I  8,50  ( LAC  LANT )  0,80 ; b) La b; c) 67,40 €
(Ver vídeo)
18. I  (25  M  15h) 1,25 (Ver vídeo)
19. a) 963,90 €; b) 170,10 € (Ver vídeo)
20. 2, 7/2, 5, 13/2, 8 (Ver vídeo)
21. a) 300a  30b  3c ; b) 2 x ; 2 x  1 ; 2 x  2 x  2  2 x  4 ;
x 2 ; x3
c) x  (20  x) ; 64 cm2 (Ver vídeo)
22. a) P  4a ; A  a 2 ;b) P  2a  2b ; A  a  b ; c)
bh
P  abc ; A 
; d) P  2b  2c ; A  a  b ;
2
Dd
; f) P  B  b  c  d ;
e) P  4a ; A 
2
( B  b)  a
l a
A
; g) P  n  l ; A 
 n h) P  2R ;
2
2
A  R 2 (Ver vídeo)
23. (Ver vídeo)
24. a) 4b3 ; b) 0; c) 5a ; d) 5 x ; e) 7 x  2 ; f) x 2  2 ; g) –3;
h) 2 x 2  3x  4 (Ver vídeo)
2
5
25. a) 3 x 2 ; b) )  20a 3 ; c) 3x 3 ; d) x 4 ; e)  x 3 ; f)
3
2
 16 2
4 2 2
2
3 2
ab ; i) a b ; j)
15 x y ; g)  8a b ; h)
3
9
4 2
 a b (Ver vídeo)
1
2
26. a) 2 x ; b) 1 / 2 ; c) 3x ; d) ; e)  2 x ; f) 2 ; g)  4
x
x
(Ver vídeo)
27. (Ver vídeo)
28. a) –19; b) –17; c) 0 (Ver vídeo)
29. a) 3; –9; 0; 4; b) 8; c) 1 y –2; d) –13 (Ver vídeo)
30. (Ver vídeo)
31. a) x 3  x 2  4 x  1 ; b) 5 x 3  9 x 2  2 x  5 ; c)
 5 x 3  9 x 2  2 x  5 d) 8 x 3  5 x 2  6 x  3 e)
 4 x 3  x 2  x  4 (Ver vídeo)
32. a) 2 x 3  6 x 2  4 x  4 ; b) 15 x 4  12 x 3  3x 2 ; c)
 10 x 3  6 x ; d) 2 x 2  x  3 ; e) 4 x 3  2 x 2  10 x  5 ; f)
3x 3  7 x 2  12 x  4 ; g) x 5  x 3  x 2  6 x  2 ; h)
 2 x 5  4 x 4  11x 3  9 x 2  17 x  3 (Ver vídeo)
33. a) 5x+6; b) 5x+1; c)  6 x 3  23x 2  11x  18 ; d)
 37 x  47 ; e)  x 3  2 x 2  8 x  1 ; f)
 2 x 4  4 x 3  12 x 2  1 (Ver vídeo)
34. a) 4 x  4 ; b) 4 x  1 ; c) 3x  1 ; d) 2 x 2  4 x ; e)
4 x  4 / 3 (Ver vídeo)
35. a) 2 x ; b) x 2 ; c) 2 x ; d) 5 x ; e) 2x 2 ; f) 8 x ; g) 2 x 2  x ;
h) x 7 ; i) 12 x 4 ; j) 4 x 3 y ; k) 14  30 x 2  10 xy ; l)
5 xy 2  5 ; m) 3ab  2b 2 ; n) 15ab  4b 2  4b ; ñ)
1 2
x y  xy  5 ;(Ver vídeo)
2
9
36. a) x 2  6 x  9 ; b) 9  6a  a 2 ; c)  3 x  x 2 ; d)
4
2
2
a  12a  36 ; e) 4 x  4 x  1 ; f) 25  30a  9a 2 ; g)
25 15
9
 a  a 2 ; h) x 2  25 ; i) 9 x 2  25 ; j)
4 2
4
9 2
x  25 (Ver vídeo)
16
37. a) ( x  3) 2 ; b) ( x  4) 2 ; c) ( x  1) 2 ; d) (2 x  1) 2 ; e)
( x  2)( x  2) ; f) (1  2 x)(1  2 x) ; g)
(2  3 x 2 )(2  3 x 2 ) (Ver vídeo)
38. a) 4( x  y  z ) ; b) x(2  6 y  3z ) ; c) a(a  3) ; d)
3(a  2b) ; e) 2( x  2 y  3 z ) ; f) 4 x(1  2 x  3 x 2 ) ; g)
9a(1  a) ; h) a 2 (2  5a  a 2 ) ; i) 2 y ( 2 x  3) ; j)
12(4 x 7  1) ; k) 4 x 3  4 x 2  3 ; l) 6 y (2  xyz 2 ) (Ver
vídeo)
x3
5
1
x 1
x 3
; b)
; c)
; d)
; e) 2
;
39. a)
x 3
x3
x 1
5x
x  6x  8
3x  3
(Ver vídeo)
f)
5x
2
5
x
3( x  2)( x  2)
; c) x  3; d) ; e)
; f)
40. a) ; b)
3
x3
2
x
9( x  2)3  1
(Ver vídeo)
3 x 2 ( x  2) 2
41. (Ver vídeo)
–14–