Download Inductancia Critica

Document related concepts

Rectificador wikipedia , lookup

Impedancia wikipedia , lookup

Circuito LC wikipedia , lookup

Resonancia eléctrica wikipedia , lookup

Fuente de alimentación wikipedia , lookup

Transcript
Celdas de Filtrado con Entrada Inductiva
Un circuito rectificador con carga capacitiva está limitado por el hecho que, para elevadas corrientes de carga,
se requiere un capacitor de filtro de capacidad elevada, que reduzca las grandes corrientes de ondulación que se
presentan; al propio tiempo, por los diodos circulan corrientes intensas de pico repetitivo y no repetitivo.
Estas limitaciones pueden superarse si se utiliza una inductancia de filtro que proporcione una carga inductiva
para el rectificador. El circuito rectificador monofásico de media onda no puede ser utilizado con una bobina de
filtro en la entrada, ya que se necesitaría una autoinductancia de valor infinito para que la corriente circulase
durante todo el ciclo. En los circuitos bifásico de media onda y monofásico de onda completa, se sustituye Rs
por una bobina en serie, L. Dicha bobina sirve para reducir los valores eficaz y de pico de la corriente y para
reducir la tensión de ondulación. Sin embargo, para igual tensión de salida, el filtro con entrada inductiva
necesita una mayor tensión que el de entrada capacitiva. A continuación se estudian el funcionamiento y los
calculos referentes a filtros con entrada inductiva.
Tension de salida del rectificador (entrada del filtro)
Consideremos un circuito monofásico de onda completa y las formas de onda correspondientes (Figs. 1 y 2). La
tensión rectificada se aplica al filtro con entrada inductiva. Esta tensión puede expresarse en forma de una serie
de Fourier que contiene una componente de CC y términos armónicos. En este circuito, el valor de pico de la
tensión de salida Vo es igual a VL V2. La tensión rectificada es aproximadamente igual a un término de CC más
un armónico a la frecuencia fundamental de ondulación, suponiendo que las amplitudes de los armónicos
superiores son despreciables. Por tanto, de las Tablas de especificaciones el valor instantáneo de la tensión de
salida del rectificador de onda completa antes del filtro, es:
Fig. 1. Rectificador monofásico de onda completa con entrada inductiva
Fig. 2 Formas de onda ideales del rectificador monofásico de onda completa con entrada inductiva
(a) tensión de salida
(b) corriente a través de Ls
(c) corriente a través de los rectificadores (D1 y D2) ó (D3 y D4)
Celda de Filtrado LC
El filtro con entrada inductiva no deja pasar, teóricamente, más que la CC. y bloquea todas las componentes de
CA. El filtro debe permitir que la c.c. circule por la carga con mínima perdida de potencia y al propio tiempo ha
de presentar gran impedancia para la frecuencia fundamental y para las demás frecuencias de ondulación. El
capacitor se dispone en paralelo con la carga para desacoplar las corrientes armónicas.
El factor de atenuación A del filtro formado por una inductancia en serie seguida de una capacidad en paralelo,
se define por la relación entre la impedancia total de entrada del filtro y la impedancia de la combinación en
paralelo del capacitor de filtro C y la resistencia de carga R carga. Para que el filtro con carga inductiva resulte
eficaz, la reactancia de la bobina de filtro en la frecuencia fundamental de ondulación debe ser mucho mayor
que su resistencia en CC, mientras que la reactancia del capacitor deberá ser mucho menor que la mínima
resistencia de carga.
Así, llamando L a la inductancia de la bobina y RL a su resistencia en CC, se puede escribir:
El valor de la inductancia L utilizada en el circuito debe permitir la conducción de los diodos durante un ciclo
de la frecuencia fundamental de ondulación. Si los diodos conducen durante un intervalo menor, el filtro con
entrada inductiva se comporta cada vez más como uno con entrada capacitiva, en el que los diodos conducen
sólo durante una parte del ciclo. Ello origina una mayor relación entre las corrientes de pico y media en los
diodos, con la consiguiente reducción de la regulación de carga.
Por tanto, para una corriente dada y para un cierto valor de autoinductancia, los diodos dejarán de conducir
antes de haber completado el ciclo. La mínima inductancia para que los diodos conduzcan durante un ciclo de
la frecuencia fundamental de ondulación se denomina inductancia crítica, Lcrt .
Inductancia crítica
Las curvas de la figura 2 indican que para que el diodo conduzca durante un ciclo completo de la frecuencia
fundamental de ondulación, la amplitud del pico negativo de la corriente de ondulación entregada por el
rectificador no debe sobrepasar la CC mínima necesaria, lo cual se cumple con una carga de R carga max.
Por tanto:
Si 2πfrL > RL, y
el valor de pico de la CA es:
La inductancia crítica se obtiene cuando el valor de pico de CA llega a ser igual a la CC.
Es decir,
Por tanto:
Para una red de 50 Hz, con rectificación de onda completa, fr = 100 Hz, de modo que el valor teórico Lcrt =
Rcargamáx / 943. Debido a las aproximaciones realizadas, resulta necesario utilizar un valor de inductancia
mayor que Lcrt . En la práctica, se debe utilizar una inductancia que sea aproximadamente igual a 2Lcrt , con
lo cual la fórmula práctica es:
z
El valor crítico de la inductancia no puede mantenerse para todas las corrientes de carga. Ello exigiría una
inductancia infinita para una corriente de carga nula. Para asegurar que la corriente circule durante todo el ciclo,
existen dos métodos que proporcionan una buena regulación en un amplio margen de variación de la corriente
de carga. Se basan en el empleo de una resistencia de drenaje o de una bobina de filtro saturable. La resistencia
de drenaje debe conectarse en paralelo con el capacitor para mantener la corriente mínima que satisfaga la
condición de inductancia crítica si no hay carga adicional (es decir, la resistencia de drenaje no debe ser mayor
que el valor de Rcargamax dado por la ecuación). Con este drenaje se evita también que la tensión de salida
alcance el valor de pico de la tensión aplicada, en ausencia de la carga.
El método de la bobina saturable utiliza la propiedad de un inductor con núcleo de hierro, cuya inductancia
depende en parte de la c.c. que circula por -dicho inductor. La bobina se diseña entonces de modo que presente
una elevada inductancia para pequeñas corrientes, la cual disminuye al aumentar la c.c. que circula por la
bobina. Este método resulta particularmente adecuado para obtener una buena regulación de la carga y da
mayor rendimiento que el empleo de la resistencia de drenaje.
Puesto que la inductancia varía con la corriente de carga, la tensión de ondulación no es independiente de la
corriente de carga. Si se utiliza una bobina de filtro saturable, debe evitarse que 3a inductancia disminuya
demasiado para la máxima corriente de carga, pues ello provocaría elevadas corrientes de pico repetitivo. En la
práctica, la inductancia LF a plena carga debe ser:
Corriente y tensión de ondulación
Entonces la corriente eficaz de ondulación es:
Puesto que:
% de ondulación = (% de ondulación antes del filtro). (1/A). De la Tabla se obtiene que la ondulación antes del
2
filtro en este circuito es = 47,2 %. Si 4πfr LC» 1, se obtiene según la ecuación.
Con una red de 50 Hz y rectificación de onda completa fr = 100 Hz; por tanto:
% de ondulación ≈ 120 / LC
donde L se expresa en henrios y C en microfaradios.
Valor mínimo de la capacidad en paralelo
Al calcular el contenido de ondulación y el factor de atenuación del filtro, hemos supuesto que la reactancia del
capacitor, a la frecuencia fundamental de ondulación, era muy inferior a la mínima resistencia de carga. En la
práctica, se obtienen resultados satisfactorios cuando la reactancia del capacitor es una quinta parte de la
mínima resistencia de carga. Es decir,
Debido a la naturaleza del circuito, el capacitor resonará con el inductor del filtro a una determinada frecuencia.
A tal frecuencia, la impedancia de salida será mayor que la reactancia del capacitor. Por tanto, al aplicar una
carga no lineal hay que procurar que la impedancia de salida del filtro sea pequeña a la frecuencia fundamental
de ondulación.
Referencias
FAPESA: “Diodos Rectificadores de Silicio” (Manual de Ingeniería de Diseño). Buenos Aires, 1974.