Download Actividad de Física: Conceptos Básicos de Celdas

Document related concepts

Celda Solar Graetzel wikipedia , lookup

Panel solar wikipedia , lookup

Conversión fotovoltaica wikipedia , lookup

Célula fotoeléctrica wikipedia , lookup

Sunpower wikipedia , lookup

Transcript
Actividad de Física: Conceptos Básicos de Celdas Solares
Guía del Estudiante
Objetivos:
Los estudiantes serán capaces de
• Entender que la luz está compuesta de objetos discretos llamados fotones
• Calcular la potencia y la eficiencia de conversión de energía de una celda solar
• Entender por qué los Celdas Solares Sensibilizadas por Tinte, CSST ((“DyeSensitized Solar Cell”, DSSCs por su siglas en inglés) requieren ciertos colores
de luz para generar la máxima potencia
Estándares de Contenido de Puerto Rico:
Naturaleza de la Ciencia, Tecnología y Sociedad
(NC.F.4.3) Manipula los instrumentos de medir voltaje, potencia, corriente y otro
equipo de laboratorio con cuidado para evitar daño físico o eléctrico del equipo.
La estructura y niveles de organización de la materia
(EM.F.2.1) Identifica el fenómeno eléctrico como un manifestación de las cargas
en las partículas subatómicas: los protones y neutrones.
(EM.F.2.2) Explica los conceptos de carga electríca, corriente eléctrica, potencial
eléctrico , campo eléctrico y campo magnético.
Trasfondo:
En la búsqueda de fuentes de energía renovables para mantener el crecimiento
económico y demográfico global, la energía solar ha recibido recientemente un énfasis
sin precedentes. El total de energía de la luz solar que llega a la tierra en 1 hora (4.3 x
1020 J) es superior al consumo mundial de energía anual en 2011. Sin embargo, la
energía solar no se puede utilizar directamente por una casa o por un automóvil, sino
solo cuando se convierte y se almacena como un producto listo para su forma de uso,
como la electricidad y los combustibles. Un dispositivo que convierte la luz en
electricidad se llama una celda solar o celda fotovoltaica. En esta actividad, usted
investigará dos tipos populares de estos dispositivos - una celda de silicio comercial y
una celda solar casera sensibilizada por tinte (“Dye-Sensitized Solar Cell”, DSSC por
sus siglas en inglés) - y discutirá sus ventajas y desventajas para la conversión de
energía solar.
La luz y la electricidad acarrean la energía de maneras muy diferentes. La luz se
compone de entidades básicas conocidas como fotones y la energía de un fotón
corresponde a E = hn, donde h es la constante de Planck y n, es la frecuencia de la luz.
La luz azul tiene frecuencias más altas y por lo tanto sus fotones son de mayor energía,
mientras que los fotones rojos tienen menos energía. La luz solar es blanca, queriendo
esto decir que se compone de una mezcla de fotones que comprenden el espectro
visible completo, además de radiación en la región ultravioleta e infraroja. Por otro
lado, las fuentes de energía eléctrica tales como las baterías producen energía (E) por
unidad de tiempo (potencia, P), mediante algún mecanismo de separación de carga.
Esta energía está determinada por la corriente (I), el voltaje (V) y el tiempo transcurrido,
t. Como P = IV y E = P·t entonces E= IV·t.
Una diferencia fundamental entre la energía solar y eléctrica es que por un lado los
fotones, así como la luz, son eléctricamente neutrales, mientras que una corriente se
compone de un flujo de partículas cargadas (electrones e iones). Por lo tanto, una
celda solar utiliza la energía de fotones neutrales para separar cargas positivas y
negativas y así generar un voltaje de salida.
Las celdas de silicio son los dispositivos más estudiados y ampliamente aplicados para
la generación de energía solar, energización de dispositivos tales como las
calculadoras hasta los edificios de oficinas. En una imagen simplista, el silicio es un
semiconductor que se puede hacer más conductivo para cargas positivas (Si tipo-p) o
cargas negativas (Si tipo-n). Cuando estos dos tipos de silicio se intercalan en conjunto,
forman una unión p-n que al absorber fotones se genera carga positiva en el lado del
tipo p y carga negativa en el lado de tipo n. Las celdas solares de silicio pueden
alcanzar una eficiencia de conversión del 22% en el caso de silicio de cristal sencillo de
gran pureza.
Las celdas solares sensibilizadas por tinte son una tecnología emergente con
materiales y equipo que se pueden obtener con facilidad. La celda se compone de un
un tinte (es decir, un material de color intenso) que absorbe la luz solar, nanopartículas
de TiO2 que sirven de medio para la separación de cargas positivas y negativas, e
iones de yoduro para completar el circuito eléctrico. Específicamente, las moléculas de
tinte están adsorbidas sobre nanopartículas de TiO2, que están haciendo contacto
íntimo sobre una superficie grande. Como resultado, se tarda menos de un
picosegundo (10-12 s) absorber la energía de un fotón por una molécula de tinte,
removerle un electrón y transferirlo a TiO2. En el proceso se genera el catión del tinte.
Posteriormente, el tinte cargado positivamente se combina con el ion yoduro y se
restaura su estado neutral. Este proceso puede ser descrito por las siguientes
ecuaciones:
En el electrodo de TiO2 (ánodo): TiO2 + Tinte + (la luz) → TiO2(e-)+ tinte+;
En el electrolito:
2(Tinte)+ + 2I-→ 2(Tinte) + I2,
I2 + I-→ I3-;
En el cátodo (revestido de grafito): I3-+ 2e-→ 3I-.
En este módulo usted utilizará tanto una celda de silicio y un CSST para convertir luz
solar o la de un proyector en electricidad. Se va a medir el voltaje y la corriente y
calcular la potencia de salida. Demostrará que la potencia de salida es
aproximadamente proporcional a la intensidad de la luz incidente, y diferentes colores
del espectro dan fotocorrientes muy diferentes. Por último, usted calculará la eficiencia
de conversión de las celdas de silicio y el CSST caseras y hará una comparación.
Materiales:
Una pequeña celda solar comercial
Un CSST de fabricación casera obtenido del módulo principal
Un multímetro con cables y pinzas de cocodrilo
Un proyector de transparencias
Paño negro / cartón / hoja para bloquear la luz
Transparencias grises
Filtros de color
Un motor eléctrico de corriente directa
Procedimiento:
¡Nunca mire a la salida de luz del proyector!
1. Obtenga una celda de silicio y un CSST y mida sus áreas expuestas.
2. Coloque la celda de silicio y la CSST en el lente de un proyector de transparencias,
mirando hacia abajo a la fuente de luz. Dos clips de carpeta se adjuntan a la celda de
silicio en la misma forma que el CSST, por lo que ambos están en paralelo con el lente
del proyector a una altura similar.
3. Encienda el proyector y deje que se caliente durante unos minutos.
4. Conecte los dos cables de la celda de silicio a un multímetro, la sonda roja al polo
positivo y la sonda negra al polo negativo. Cambie el multímetro para voltaje d.c. (V) y
luego a corriente continua (mA) y registre las lecturas.
5. Coloque filtros de color como los azules, verdes y rojos entre las céldas solares y el
lente, y luego registre el voltaje y la corriente de salida.
6. Disminuya la luz usando primero un trozo de la transparencia gris, y luego dos de
ellos juntos. Anote el voltaje y la corriente que registre la celda.
7. Bloquee la luz con un trapo negro y registre el voltaje y la corriente en la oscuridad.
8. Repita los pasos 3 a 6 para el CSST.
9. Tome varios CSSTs con el mejor rendimiento y conéctelos en serie. ¿Cuántos de
ellos son necesarios para hacer funcionar un motor eléctrico?
10. Apague el proyector y guarde las celdas solares.
Hoja de trabajo del estudiante:
Seguridad
¡Nunca mire a la salida de luz del proyector!
Datos
Complete la siguiente tabla con las áreas medidas, voltajes y corrientes. También anote
el filtro de color utilizado.
Celda Solar de Silicio
Condiciones
Área: _____ cm2
Voltaje
(mV)
Corriente
(mA)
Celda solar sensibilizada por
tinte
Area: _____ cm2
Voltaje (mV)
Corriente (mA)
Fuente sin filtro
Filtro 1
Color: ______
Filtro 2
Color: ______
Filtro gris
sencillo
Filtro gris doble
Oscuridad
Ejercicios
1. ¿Cuál es la potencia total de la luz solar que incide sobre la tierra?
2. ¿Cómo puede identificar el polo positivo (+) y el polo negativo (-) de una célda de
silicio y un CSST?
3. ¿Qué hacen los filtros de color a la corriente y voltaje de salida? ¿Y por qué?
4. Calcule la potencia de salida (en mW) de la celda de silicio y la CSST con ningún,
uno y dos filtros grises. Calcule la densidad de potencia (en mW/cm2), dividiendo la
potencia de salida por área.
5. Obtenga de su maestra(o) cuál es la potencia de salida de luz del proyector. Calcule
la eficiencia de conversión de energía (en porcentaje) de las celdas.