Download texto: laboratorios de dispositivos y componentes electronicos uti

Document related concepts

Multímetro wikipedia , lookup

Medidor de ESR wikipedia , lookup

Rectificador wikipedia , lookup

Vatímetro wikipedia , lookup

Electrónica wikipedia , lookup

Transcript
@
FACULTAD DE INGENIERÍA ELÉCTRICA Y
ELECTRÓNICA
,
'1tDV 2014
INSTITUTO DE INVESTIGACIÓN DE LA FACULTAD DE
INGENIERÍA ELÉCTRICA Y ELECTRÓNICA
JNWER~IMú
ij~tíítj~~~~l t~~~~. \
VI~,;. •"'f.T<• .~¡¡(1 ~e ¡f "" 11 "' CjQ,,
.~?/i!_::5~5(l'
R
tJN!VERS!DAD NACIONAL DEL (flLL.~()
~
~ ViCt·::lE~·~·:r>',Y.7J\!f:ST!GACIÓN
DE oocUMENrACiciN\
~ .~~~ .................. ~.:;.·~:.::::::·
CENTRO
CIENTIFICAY iRAJ~~NF~
INFORME FINAL DE TRABAJO DE
INVESTIGACIÓN
TEXTO: LABORATORIOS DE DISPOSITIVOS
Y COMPONENTES ELECTRONICOS
UTI.LIZANDO LAS NUEVAS TECNOLOGIAS"
FACULTAD DE INGENIERÍA ELÉCTRICA Y
ELECTRÓNICA
AUTOR:ING. ABILIO BERNARDINO CUZCANO RIVAS
(PERIODO DE EJECUCIÓN: Del 01 de Abril de 2013 al31.-de
Marzo de 2014)
(Resolución aprobado N° 382-2013-R)
CALLAO- AÑO 2014
1
1
DEDICATORIA
Dedicamos a Dios que nos
ayuda en los momentos más
difíciles y a mis
padres por
su apoyo y fortaleza que nos
brindan.
AGRADECIMIENTO
En el presente trabajo agradezco a Dios por bendecirme y darme el apoyo
en los momentos más difíciles.
Ala UNIVERSIDAD DEL CALLAO por brindamos la oportunidad de crecer
profesionalmente.
A mis profesores y compañeros por sus amplios conocimientos que me
brindaron para este trabajo·
A. INDICE
A) INDICE
4
B) PROLOGO
8
C) INTRODUCCION
9
D) CONTENIDO
12
E) RESULTADO
~c1JI
F) DISCUCION
~,~) \
G) REFERENCIA
6ft
H)ANEXOS
~'
A~ .
-"'
4
ÍNDICE DE CONTENIDO
CAPÍTUL01
MANEJO DE INSTRUMENTOS ELECTRONICOS
1. 1
Objetivos
12
1.2
Base Técnica de Componentes
21
1.3
Practica en Laboratorio
21
1.4
Informe detallado de Ocurrencias
25
CAPÍTULO 2
COMPORTAMIENTO DE UN DIODO
2.1 Objetivos
27
2.2 Base Técnica de Componentes
27
2.3 Practica en Laboratorio
31
2.41nforme detallado de Ocurrencias
37
CAPÍTULO 3
DIDO RECTIFICADOR DE MEDIA ONDA
3.1 Objetivos
38
3.2 Base Técnica de Componentes
38
3.3 Practica en Laboratorio
38
3.4 Informe detallado de Ocurrencias
40
5
CAPÍTULO 4
DIODO RECTIFICADOR DE ONDA COMPLETA
4.1 Objetivos
41
4.2 Base Técnica de Componentes
42
4.3 Practica en laboratorio
42
4.4 Informe detallado de Ocurrencias
49
CAPÍTULO 5
DIDOZENER
5.1 Objetivos
50
5.2 Base Técnica de Componentes
50
5.3 Practica en Laboratorio
50
5.4 Informe detallado de Ocurrencias
52
CAPÍTULO 6
TRANSISTORES
5. 1 Objetivos
53
5.2 Base Técnica de Componentes
53
5.3 Practica en Laboratorio
55
5.4 Informe detallado de Ocurrencias
57
6
CAPÍTULO 7
TRANSISTOR BIPOLAR
7. 1 Objetivos
58
7.2 Base Técnica de Componentes
58
7.3 Practica en Laboratorio
58
7.41nforme detallado de Ocurrencias
69
CAPÍTULO 8
RECTIFICADOR DE SILICIO CONTROLADO
8.10bjetivos
62
8.2 Base Técnica de Componentes
62
8.3 Practica en Laboratorio
64
8.41nforme detallado de Ocurrencias
66
7
B. PROLOGO
DISPOSITIVOS Y COMPONENTES ELECTRONICOS es una asignatura
muy importante dentro primordial para de la carrera de Ingeniería
Eléctrica y Electrónica, y siendo de necesidad la buena formación
académica de los estudiantes, en esta ocasión se ha
preparado
cuidadosamente el presente material de estudio para conseguir tal fin. La
asignatura de Dispositivos y Componentes Electrónicos está diseñada
específicamente para la carrera de Ingeniería Eléctrica abarcando, por
tanto, los siguientes temas: Manejo de Instrumentos Electrónicos,
Comportamiento de un diodo, Diodo Rectificador de Media Onda, Diodo
rectificador de onda completa, Diodo Zener, Transistores, Transistor
Bipolar, Rectificador de Silicio Controlado.
El presente material, si bien es teórico, se complementará - en el
desarrollo
del
ciclo
académico,
con
Experiencias
Prácticas
de
Laboratorios de Dispositivos y Componentes Electrónicos aplicados a la
Ingeniería Moderna.
8
C.INTRODUCCION
El proyecto de investigación realizado está referido a la elaboración de
un texto universitario, cuya finalidad es apoyar en la formación
profesional de los alumnos de la Facultad de Ingeniería Eléctrica y
Electrónica, en el curso de Dispositivos y Componentes Electrónicos y
afines.
Durante mi experiencia en la docencia universitaria, en el intento de
encontrar textos necesarios para la enseñanza de los laboratorios de
Dispositivos y Componentes Electrónicos( Curricula de lng. Eléctrica),
he comprobado que los textos utilizados son muy extensos y en su
mayoría no tienen una metodología didáctica, donde los temas de
estudio se hallan muy dispersos, por tal motivo es necesario hacer una
sistematización de acuerdo a una propuesta concisa de cómo
desarrollar experiencias de Laboratorios.
El presente Proyecto de Investigación tuvo como propósito la
elaboración de un texto universitario titulado LABORATORIOS DE
DISPOSITIVOS Y COMPONENTES ELECTRONICOS APLICADOS A
LA INGENIERÍA MODERNA. El texto se propone apoyar la formación
profesional de Jóvenes Universitarios, que tocan temas sobre
Dispositivos y componentes electrónicos. Se trata de un texto básico
que expone de manera sucinta los temas teóricos correspondientes a
teoría de Dispositivos y componentes electrónicos.
La elaboración de este texto tiene la ventaja de adecuarse a la
estructura curricular del curso de Dispositivos y Componentes
Electrónicos, de la Escuela Profesional de Ingeniería Eléctrica y del
de la Escuela Profesional de Ingeniería Electrónica de la Facultad de
Ingeniería Eléctrica y Electrónica de la Universidad Nacional del
Callao.
Además, los diversos temas tratados en este texto son
abordados bajo una serie de experiencias de Laboratorio.
9
c.1 Planteamiento del problema de investigación
- DESCRIPCIÓN Y ANÁLISIS DEL TEMA
El presente trabajo de investigación busca brindar en una forma
rápida y sencilla los conceptos básicos sobre dispositivos y
componentes electrónicos, y a su vez analizar los diferentes casos
que se puedan presentar en el uso de los dispositivos y
componentes electrónicos, por ejemplo la aplicación de los Diodos
en la Ingeniería.
c.2 OBJETIVOS Y ALCANCES DE LA INVESTIGACIÓN
Objetivo General:
Elaborar
el
texto
"LABORATORIOS
DE
DISPOSITIVOS
Y
COMPONENTES ELECTRONICOS APLICADOS A LA INGENIERÍA
MODERNA",
para contribuir en el rendimiento Académico del
estudiante de la FIEE en la Asignatura de Dispositivos y componentes
Electrónicos.
Objetivos Específicos:
./ Elaborar una metodología en el desarrollo de las Experiencias
Prácticas del laboratorio de Dispositivos y Componentes
Electrónicos .
./ Proponer una serie de 08 experiencias Prácticas
para el
desarrollo de los Laboratorios de Dispositivos y componentes
Electrónicos, utilizando las nuevas tecnologías aplicadas a la
ingeniería.
10
Alcances de la investigación
•
El texto: "LABORATORIOS DE DISPOSITIVOS Y COMPONENTES
ELECTRONICOS APLICADOS A LA INGENIERÍA MODERNA", será de
utilidad para estudiantes y docentes de la Facultad de Ingeniería Eléctrica
y electrónica de la Universidad Nacional del callao y otras instituciones.
•
El texto: "LABORATORIOS DE DISPOSITIVOS Y COMPONENTES
ELECTRONICOS
APLICADOS
A
LA
INGENIERÍA
MODERNA",
presentará una serie de 08 experiencias Prácticas para el desarrollo de
los Laboratorios de Dispositivos y componentes electrónicos, utilizando
las nuevas tecnologías aplicadas a la ingeniería.
c. 3 IMPORTANCIA Y JUSTIFICACION DE LA INVESTIGACIÓN
IMPORTANCIA
El desarrollo del trabajo de investigación TEXTO: "LABORATORIOS DE
DISPOSITIVOS Y COMPONENTES ELECTRONICOS APLICADOS A LA
INGENIERÍA MODERNA" será de suma importancia porque constituye un
trabajo de divulgación científica, en donde se abordará los diversos temas
Experimentales de la Asignatura de dispositivos y componentes electrónicos,
que son fundamentales en la formación profesional del Ingeniero Electricista
y Electrónico
JUSTIFICACION
Por lo expresado anteriormente el proyecto está completamente justificado,
porque es un aporte académico que beneficiará
a los estudiantes de
ingeniería, principalmente de ingeniería Eléctrica y Electrónica
y a los
profesores que dictan los Laboratorios de Dispositivos y componentes
Electrónicos
11
D. CONTENIDO
CAPITULO 1
MANEJO DE INSTRUMENTOS
ELECTRONICOS
1.
OBJETIVOS.
La importancia de los instrumentos eléctricos de medición es
incalculable, ya que mediante el uso de ellos se miden e indican
magnitudes eléctricas, como corriente, carga, potencial y energía, o
las características eléctricas de los circuitos, como la resistencia, la
capacidad, la capacitancia y la inductancia. Además que permiten
localizar las causas de una operación defectuosa en aparatos
eléctricos en los cuales, como es bien sabidos, no es posible apreciar
su funcionamiento en una forma visual, como en el caso de un
aparato mecánico.
la información que suministran los instrumentos de medición eléctrica
se da normalmente en una unidad eléctrica estándar: ohmios, voltios,
amperios, culombios, henrios, faradios, vatios o julios.
Unidades
eléctricas,
cuantitativamente
toda
unidades
clase
empleadas
de fenómenos
para
medir
electrostáticos
y
electromagnéticos, así como las características electromagnéticas de
los componentes de un circuito eléctrico. Las unidades eléctricas
empleadas en técnica y ciencia se definen en el Sistema Internacional
de unidades. Sin embargo, se siguen utilizando algunas unidades
más antiguas.
Unidades SI
la unidad de intensidad de corriente en el Sistema Internacional de
unidades es el amperio. La unidad de carga eléctrica es el culombio,
que es la cantidad de electricidad que pasa en un segundo por
12
cualquier punto de un circuito por el que fluye una corriente de 1
amperio. El voltio es la unidad SI de diferencia de potencial y se
define como la diferencia de potencial que existe entre dos puntos
cuando es necesario realizar un trabajo de 1 julio para mover una
carga de 1 culombio de un punto a otro. La unidad de potencia
eléctrica es el vatio, y representa la generación o consumo de 1 julio
de energía eléctrica por segundo. Un kilovatio es igual a 1.000 vatios.
Las unidades también tienen las siguientes definiciones prácticas,
empleadas para calibrar instrumentos: el amperio es la cantidad de
electricidad que deposita 0,001118 gramos de plata por segundo en
uno de los electrodos si se hace pasar a través de una solución de
nitrato de plata; el voltio es la fuerza electromotriz necesaria para
producir una corriente de 1 amperio a través de una resistencia de 1
ohmio, que a su vez se define como la resistencia eléctrica de una
columna de mercurio de 106,3 cm de altura y 1 mm2 de sección
transversal a una temperatura de O °C. El voltio también se define a
partir de una pila voltaica patrón, la denominada pila de Weston, con
polos de amalgama de cadmio y sulfato de mercurio (1) y un electrólito
de sulfato de cadmio. El voltio se define como 0,98203 veces el
potencial de esta pila patrón a 20 °C.
En todas las unidades eléctricas prácticas se emplean los prefijos
convencionales del sistema métrico para indicar fracciones y múltiplos
de las unidades básicas. Por ejemplo, un microamperio es una
millonésima de amperio, un milivoltio es una milésima de voltio y 1
megaohmio es un millón de ohmios.
Resistencia, capacidad e inductancia
Todos los componentes de un circuito eléctrico exhiben en mayor o
menor medida una cierta resistencia, capacidad e inductancia. La
unidad de resistencia comúnmente usada es el ohmio, que es la
resistencia de un conductor en el que una diferencia de potencial de 1
13
voltio produce una corriente de 1 amperio. La capacidad de un
condensador se mide en faradios: un condensador de 1 faradio tiene
una diferencia de potencial entre sus placas de 1 voltio cuando éstas
presentan una carga de 1 culombio. La unidad de inductancia es el
henrio. Una bobina tiene una autoinductancia de 1 henrio cuando un
cambio de 1 amperio/segundo en la corriente eléctrica que fluye a
través de ella provoca una fuerza electromotriz opuesta de 1 voltio. Un
transformador,
o
dos
circuitos
cualesquiera
magnéticamente
acoplados, tienen una inductancia mutua de 1 henrio cuando un
cambio de 1 amperio por segundo en la corriente del circuito primario
induce una tensión de 1 voltio en el circuito secundario.
Dado que todas las formas de la materia presentan una o más
características eléctricas es posible tomar mediciones eléctricas de un
número ilimitado de fuentes.
Mecanismos básicos de los medidores
Por su propia naturaleza, los valores eléctricos no pueden medirse por
observación directa. Por ello se utiliza alguna propiedad de la
electricidad para producir una fuerza física susceptible de ser
detectada y medida. Por ejemplo, en el galvanómetro, el instrumento
de medida inventado hace más tiempo, la fuerza que se produce
entre un campo magnético y una bobina inclinada por la que pasa una
corriente produce una desviación de la bobina. Dado que la
desviación es proporcional a la intensidad de la corriente se utiliza
una escala calibrada para medir la corriente eléctrica. La acción
electromagnética entre corrientes, la fuerza entre cargas eléctricas y
el calentamiento causado por una resistencia conductora son algunos
de los métodos utilizados para obtener mediciones eléctricas
analógicas.
14
Calibración de los medidores
Para garantizar la uniformidad y la precisión de las medidas los
medidores eléctricos se calibran conforme a los patrones de medida
aceptados para una determinada unidad eléctrica, como el ohmio, el
amperio, el voltio o el vatio.
Patrones principales y medidas absolutas
Los patrones principales del ohmio y el amperio de basan en
definiciones de estas unidades aceptadas en el ámbito internacional y
basadas en la masa, el tamaño del conductor y el tiempo. Las
técnicas de medición que utilizan estas unidades básicas son precisas
y reproducibles. Por ejemplo, las medidas absolutas de amperios
implican la utilización de una especie de balanza que mide la fuerza
que se produce entre un conjunto de bobinas fijas y una bobina móvil.
Estas mediciones absolutas de intensidad de corriente y diferencia de
potencial tienen su aplicación principal en el laboratorio, mientras que
en la mayoría de los casos se utilizan medidas relativas. Todos los
medidores que se describen en los párrafos siguientes permiten hacer
lecturas relativas.
Medidores de corriente
a) Galvanómetros
Los galvanómetros son los instrumentos principales en la detección y
medición de la corriente. Se basan en las interacciones entre una
corriente eléctrica y un imán. El mecanismo del galvanómetro está
diseñado de forma que un imán permanente o un electroimán produce
un campo magnético, lo que genera una fuerza cuando hay un flujo
de corriente en una bobina cercana al imán. El elemento móvil puede
ser el imán o la bobina. La fuerza inclina el elemento móvil en un
grado proporcional a la intensidad de la corriente. Este elemento móvil
15
~i
puede contar con un puntero o algún otro dispositivo que permita leer
en un dial el grado de inclinación.
El galvanómetro de inclinación de D'Arsonval utiliza un pequeño
espejo unido a una bobina móvil y que refleja un haz de luz hacia un
dial situado a una distancia aproximada de un metro. Este sistema
tiene menos inercia y fricción que el puntero, lo que permite mayor
precisión. Este instrumento debe su nombre al biólogo y físico francés
Jacques D'Arsonval, que también hizo algunos experimentos con el
equivalente mecánico del calor y con la corriente oscilante de alta
frecuencia y alto amperaje (corriente D'Arsonval) utilizada en el
tratamiento de algunas enfermedades,
como la artritis.
Este
tratamiento, llamado diatermia, consiste en calentar una parte del
cuerpo haciendo pasar una corriente de alta frecuencia entre dos
electrodos colocados sobre la piel. Cuando se añade al galvanómetro
una escala graduada y una calibración adecuada, se obtiene un
amperímetro, instrumento que lee la corriente eléctrica en amperios.
D'Arsonval es el responsable de la invención del amperímetro de
corriente continua.
Sólo puede pasar una cantidad pequeña de corriente por el fino hilo
de la bobina de un galvanómetro. Si hay que medir corrientes
mayores, se acopla una derivación de baja resistencia a los
terminales del medidor. La mayoría de la corriente pasa por la
resistencia de la derivación, pero la pequeña cantidad que fluye por el
medidor sigue siendo proporcional a la corriente total. Al utilizar esta
proporcionalidad el galvanómetro se emplea para medir corrientes de
varios cientos de amperios.
Los galvanómetros tienen
denominaciones distintas según
la
magnitud de la corriente que pueden medir.
16
b) Microamperímetros
Un microamperímetro está calibrado en millonésimas de amperio y un
miliamperímetro en milésimas de amperio.
Los galvanómetros convencionales no pueden utilizarse para medir
corrientes alternas, porque las oscilaciones de la corriente producirían
una inclinación en las dos direcciones.
e) Electrodinamómetros
Sin
embargo,
una
variante
del
galvanómetro,
llamado
electrodinamómetro, puede utilizarse para medir corrientes alternas
mediante una inclinación electromagnética. Este medidor contiene
una bobina fija situada en serie con una bobina móvil, que se utiliza
en lugar del imán permanente del galvanómetro. Dado que la
corriente de la bobina fija y la móvil se invierte en el mismo momento,
la inclinación de la bobina móvil tiene lugar siempre en el mismo
sentido, produciéndose una medición constante de la corriente. Los
medidores de este tipo sirven ,también para medir corrientes
continuas.
d) Medidores de aleta de hierro
Otro tipo de medidor electromagnético es el medidor de aleta de
hierro o de hierro dulce. Este dispositivo utiliza dos aletas de hierro
dulce, una fija y otra móvil, colocadas entre los polos de una bobina
cilíndrica y larga por la que pasa la corriente que se quiere medir. La
corriente induce una fuerza magnética en las dos aletas, provocando
la misma inclinación, con independencia de la dirección de la
corriente. La cantidad de corriente se determina midiendo el grado de
inclinación de la aleta móvil.
e) Medidores de tennopar
Para medir corrientes alternas de alta frecuencia se utilizan medidores
que dependen del efecto calorífico de la corriente. En los medidores
de termopar se hace pasar la corriente por un hilo fino que calienta la
unión de termopar. La electricidad generada por el termopar se mide
17
con un galvanómetro convencional. En los medidores de hilo
incandescente la corriente pasa por un hilo fino que se calienta y se
estira. El hilo está unido mecánicamente a un puntero móvil que se
desplaza por una escala calibrada con valores de corriente.
f) Medición del voltaje
El instrumento más utilizado para medir la diferencia de potencial (el
voltaje) es un galvanómetro que cuenta con una gran resistencia
unida a la bobina. Cuando se conecta un medidor de este tipo a una
batería o a dos puntos de un circuito eléctrico con diferentes
potenciales pasa una cantidad reducida de corriente (limitada por la
resistencia en serie) a través del medidor. la corriente es proporcional
al voltaje, que puede medirse si el galvanómetro se calibra para ello.
Cuando se usa el tipo adecuado de resistencias en serie un
galvanómetro sirve para medir niveles muy distintos de voltajes. El
instrumento más preciso para medir el voltaje, la resistencia o la
corriente continua es el potenciómetro, que indica una fuerza
electromotriz no valorada al compararla con un valor conocido.
Para medir voltajes de corriente alterna se utilizan medidores de
alterna con alta resistencia interior, o medidores similares con una
fuerte resistencia en serie.
los demás métodos de medición del voltaje utilizan tubos de vacío y
circuitos electrónicos y resultan muy útiles para hacer mediciones a
altas frecuencias. Un dispositivo de este tipo es el voltímetro de tubo
de vacío. En la forma más simple de este tipo de voltímetro se
rectifica una corriente alterna en un tubo de diodo y se mide la
corriente rectificada con un galvanómetro convencional.
Otros
voltímetros de este tipo utilizan las características amplificadoras de
los tubos de vacío para medir voltajes muy bajos. El osciloscopio de
rayos catódicos se usa también para hacer mediciones de voltaje, ya
que la inclinación del haz de electrones es proporcional al voltaje
aplicado a las placas o electrodos del tubo.
18
Otros tipos de mediciones
a) Puente de Wheatstone
las mediciones más precisas de la resistencia se obtienen con un
circuito llamado puente de Wheatstone, en honor del físico británico
Charles Wheatstone. Este circuito consiste en tres resistencias
conocidas y una resistencia desconocida, conectadas entre sí en
forma de diamante. Se aplica una corriente continua a través de dos
puntos opuestos del diamante y se conecta un galvanómetro a los
otros dos puntos. Cuando todas las resistencias se nivelan, las
corrientes que fluyen por los dos brazos del circuito se igualan, lo que
elimina el flujo de corriente por el galvanómetro. Variando el valor de
una de las resistencias conocidas, el puente puede ajustarse a
cualquier valor de la resistencia desconocida, que se calcula a partir
los valores de las otras resistencias. Se utilizan puentes de este tipo
para medir la inductancia y la capacitancia de los componentes de
circuitos. Para ello se sustituyen las resistencias por inductancias y
capacitancias
conocidas.
los
puentes
de
este
tipo
suelen
denominarse puentes de corriente alterna, porque se utilizan fuentes
de corriente alterna en lugar de corriente continua. A menudo los
puentes se nivelan con un timbre en lugar de un galvanómetro, que
cuando el puente no está nivelado, emite un sonido que corresponde
a la frecuencia de la fuente de corriente alterna; cuando se ha
nivelado no se escucha ningún tono.
b) Vatímetros
La potencia consumida por cualquiera de las partes de un circuito se
mide
con
un
vatímetro,
un
instrumento
parecido
al
electrodinamómetro. El vatímetro tiene su bobina fija dispuesta de
forma que toda la corriente del circuito la atraviese, mientras que la
bobina móvil se conecta en serie con una resistencia grande y sólo
deja pasar una parte proporcional del voltaje de la fuente. La
inclinación resultante de la bobina móvil depende tanto de la corriente
19
como del voltaje y puede calibrarse directamente en vatios, ya que la
potencia es el producto del voltaje y la corriente.
e) Contadores de servicio
El medidor de vatios por hora, también llamado contador de servicio,
es un dispositivo que mide la energía total consumida en un circuito
eléctrico doméstico. Es parecido al vatímetro, pero se diferencia de
éste en que la bobina móvil se reemplaza por un rotor. El rotor,
controlado por un regulador magnético, gira a una velocidad
proporcional a la cantidad de potencia consumida. El eje del rotor está
conectado con engranajes a un conjunto de indicadores que registran
el consumo total.
d) Sensibilidad de los instrumentos
la sensibilidad de un instrumento se determina por la intensidad de
corriente necesaria para producir una desviación completa de la aguja
indicadora a través de la escala. El grado de sensibilidad se expresa
de dos maneras, según se trate de un amperímetro o de un
voltímetro.
En el primer caso, la sensibilidad del instrumento se indica por el
número de amperios, miliamperios o microamperios que deben fluir
por la bobina para producir una desviación completa. Así, un
instrumento que tiene una sensibilidad de 1 miliamperio, requiere un
miliamperio para producir dicha desviación, etcétera.
20
1. OBJETIVO:
~.s. Adiestrar af• -~iante con los conocimientos necesarios en el manejo de los
instrumentos de medición de parámetros básicos de una red eléctrico.
~-
·
Conocer· el uso del Voltímetro, Amperímetro y Ohmiómetro, poro lá medición
de diferencias de· poteilcitd eléctrico,· intensidades de.· corriente eléctrico: y
resistencias eléctricas, respectivamente.
2. EQUIPOS Y COMPoNENTES REQuERIDOS
y -vAC y Muitimetro digifol .· .
Pifo de 1;5V. batería de 9V. ·
. ~ Resistores de .carbón de 1 Watt: 1000, lKQ y lOKa.
~ . Protoboord y cables de conexi6n fpar telefónico o U1P).
§ . Fuetltes de vo~taje V~
~
3. INFORMACIÓN TEÓRICA
HFE.
Ól':uneiro
;___t~~~~p¡=;e;~~=-=
Ampenmetro
.d• o;Qntinua
Tennínal
VoltiO$/óbrniO$
El
VoltímetrO~~ El voltímetro mlckda diferenc.ia de
potencial o tensión en vottios que presentan los
·etementos entre sus terminales. Debemos elf!9ir·un
voltímetro de corriente . eontinua o alterna, .
··dependiendo del· tipo· dé. tensión que: -queremos .
medir.
·
R1
· Paro realizar la medícíÓJJ, el circuito debe estar
conectado al suministro de energ'ta. y ef voltímetro .
1 ..
.·se debe colocar en paralelo al .elemento del cuat
queremos averiguar su tensión.
Un ejemplo de: oonex:iooodo se muestro. en fa figura.
Vcc
El voltímetro de corriente continua tiene polaridad por 10 que hay que tener especial
·cuidado a la: hora de conectar sUS' terminalu.
21
El ·A:mpérimet.rO~- El amperímetro ·m.ide la· corriente ·en amperios· que circula per ·.úna
rama de un circ:tiito. la corriente puede ser contima o alterna. 6E9Úfl el tipo de
corriente se debe elegir él tipo de amperímetro.
Paro nolizor la medición,· el amperímdro debe conectarse en serie con fa romo que
queremos conocer su corriente:. .De manera .qtie hos. vemos. obligádos a abrir ef
circuito ,e intercoiQI"'lo.
Un ejemplo de·. conexionado se
mtiestro en la· figura adjunta. .
El .amperímetro·. de .·corriente.
contjnua tiene polaridad por lo
que hoY que .tener . especial .
cuídado a la hora de conectar sus . · ·
terminales.
Si .se conecta en paralelo . ef
amperímetro se puede destruir
el fusible interno . y . dejar de
R
...·')·
r
funcionar.
Vce
El Ohmióme1ro.- El valor Óhmico de un Resistor se mide ·
colocando las puntas de prueba del Ohmiómetro en paroielo .
con el resisfur s·epara.do del r.est·o del circuito.
. . . .· .
Un ejemplo de cone.Xiooodo se muestro en. lo fi9uro adjunta.·
R.
22
4. DESARROLLO DELA'PRÁCTICA
4.1. Uso del Ohmímetro
P Con el apoyo deJ profesar, identificar los resistores de 1000, lKQ y tOKn.
·Ponerles etiquetas de ideátificación.
o .. Colocar los oobles de prueba del muttímet...O .
en los ter,minales para medir Ohmios (n).
. . P Ubicar el f'01190 de. Ohmios y .en la escala
. odecúáda, teniendo en cuenta Ja magnitud de
la resistencia que se va a nwdir (IOOQ, lKO
o 101<0); ~ir la escala superior más
próxima, luego conectar Jos puntos de
· prueba en los term.inafies de la resistencia
· · libre de todo ·circuito~ Verificar una buena ·
conexiórL
q Anotar· la
lecturo de
la resb-tencios.
mostradas en .el díspJay digital.
Runo =
·RJ.Kn =·_·------"--'---
RIOm=----
23
P Medir las mism:a.s resistencias, seleccionaildo tas siguientes escalos y anote
. los datos en la SÍ.!JUiente Tnbta.l!
Tobloi Esedíci 200 ·. EScota 2K. ÉscGJa 2o1c:•
.·:~...:-.~-·.;
: .; .; --,:~.----.~-~---
.
.
;..:-::~--- :.--· .. -·':-.":.··.-.
~ ~
.... _._.:·::-
.ESCátá 200K
)·.: __.-.>"'-;~ ..-.. >.:-~-::~ .."-
. .
·¡;a. Aoo·te .sus· .:ibser-Vridones:
4.2. Uso del Vo~tímetro de awriente alterna (VAc) . ·
. ···.
H COiooor los cables de prueba del multíme:tro en los termincdes poro: medir .
. . Voltaje alterno. .
a UbictU' el
VAcY en .la escoJa adecuada, ..
tmiendo · en cuento la rnognitud de voltaje
que se va a medir; e.leqir la escala superior
.. -más próxima. nunca meoor,. 'uego conectw".
· fas puntas de JH'lleOO del Voftímetro en tos
terminales del dispositivo en donde se desea
·averiguar el voltaje.
~o
fi~~~~~~~~
.·s .Para medir·eJ' voltaje del tomacorriente del
· suministro eléctrico do·méStico, Ja escala d~ ·
· - VAc- a elegir debe·· ser mayor que 250V.
Anotaf' el voltaje medido: .
_ . VToMAcomtiENTE
= . _ . . . _. . -
.
..· a R;epetir el procedimíento para medir Ull
- voitaje de la fuente VAc· Anotondo·et voltaje
medido:
- -- VF.UENTE_ItC
= __;._.;--~·
24
4. 3. Uso del Voltímetro de corriente continua {Voc) ·
.0. Colocar fos robles de prueba del multímetro en los terminales paro. medir
Voltaje de corriente directa.
.
8. Ubkar el rango Vcc y -en fa escota :adecuada. _ .· tc'····-i)'' ·' ¡,,,.,_,,.._,,_.
· ·teniendo ·en cuenta lo ·magnitud de voltaje·
_q.ue se va a medir; elegir la escalo superior
-
mós próxima. nunca menor. luego conectar
-_ -_ fas puntas -de prueba del Voltimetro· en los
. terminales del dispositivo en donde se deseri
averiguar el voltaje.
8 Poro medir eJ voltaje de una pilo, la escala de
-- Voc a medir deberá ser superior· -o I.5V.
. ·Anotar :el voltaje :medido:·
. VPILA
= --~-
8 Poro medir el voltaje de una batería. - la
· . escafn de Vnc a medir deberá .ser superior- e
9V. Anotar e!' voltaje medido~· ·
• VeATEdA = -----,--'---'--P Repetir el procedimiento p0ro medir el voltaje entre fos terminales ~ y .
omaf'l:llo de lo fuente de :PC (Voc), At~ote el voltaje medido:
.
-_ VNE61ID_AMA!m.LO
= --~-
9 Repetir -el' procedimiento pani .medir el voltaje entre Jos terminales negro y
rojo de la. fuente de PC{Voc), Anote el vo'Jtaje medido:
.
VNEsr;tO~OJQ:
= .;....;.._;-:---,-----'---
~- Repetir-er procedimiento poro medir el voltaje errhoe Jos terminales
ne9ro y
azul de fa fuente de PC (Vnc)•. Anote el voltaje medido:
. VNEGRO~ AZUl=
. . . .. .
. .
.. . .
. . ..
. .
. ·.
..
..
. .
.
. .. .
. . .. .
a. Repetir· ef procedimiento para. medir el voltaje entre ~os terminales negro y .
b1anco de fa fuent:e de PC (Voc). Anote el voltaje medido:
V
. BlANCO--.,_;__.__ __
· NE6RO_
g:
Aoote :Sus obser-Vaciones: .
25
4.4 .. Uso del Amperímetro de corriente continua ·
.8 Pera el circuito de ta figura adjunta.
detennine la magnitud de ta intensidad de
· · corriente que entrega fa fuente. ·
. ·.Anote el vmor voltaje ·medido_
R.
10oo·
lfUam =- - - S Colocar los cableS de ·prueba del multímetro
. en· los . terminale.S para medir. Amperoje~
tener en cuenta la magnítúd de intensidad de
eorriente poro elegir el correcto (A ó mA}.
· . R Ubic<lf' el ·rango · A o mA en m e:Scata
en
adecLiaOO, teniendo
>CUenta Ja magnitud de
. · 1intenSidad de COJTiente que se va o medir;
ele9ir la escala superior más próxima.. nunca
menor. flJe90 conectar las puntos de prueba
del Ampérimetro en serie: con el dispositivo . ·
· R Implemente el circüito tal· cómo se muestra·
en 1a Figuro, conectando el amperíme::tro en
serie con e:t resistor: Mida y anote la
·intensidad · de · corriente ·que· entrega Jo.
· fuente:.·
IRJENTE. = --'---'-----· Pe Anote su5 observnciones:
26
CAPITULO 2
COMPORTAMIENTO DE UN
DIODO
L OBJETIVOS:
la prdctioo pretende que el alumno~
:r- Cono.zca las pruebas de labomtorio. reoli:zados a los diodos de juntura. poro
_determinar su estado de operatividad.
. ,. Compruebe experime.ntafmet1te: el comportamiento del diodo de junttirá como
dispositivo semiconductor y su opfrcnc:ión como: diodo rP...ctifioodor y diodo de
protección.
,. Comparar los resuftados próctieos, oon Jos resultados obtenídos mediante ef
· simulado.r ProteusTsis.
2.
EQUIPOS Y COMPONENTES
~·
fuente de voltaje Voc y fuente de voltaj~ VAC
- ~ Multimetro digitaL
- i · 04 diodos de ini.ióti: UJ4004 o·IN4007~
-~ 02 diodos rooJogrodos {diodos simples).
~- Condensadores electroffticos: 2200uf/25V, lOOUf/25V.
~ .Resistores de carbón de 1W: 6800.. 1kn y lOkn.
~. Profoboard y cables de corte>ti6n; · · ·
3. SOFTWARE REQUERIOO
- · ·_ m: Proteus Isis
v72 SP6 ó superior;
,,
,
4 .. INFORMACION TEORICA
·::· D'IOI>O' DE UNIÓN O OE JUNTURA:
que
Un diodo es un dispositivo semicónductor.
pemite el paso de -ia corriente
eléctrica en una único dirección~ De forma :simpHfíCada~ fa curva. característica de
- un diodo (I~V) .consta de das regiones r por debajo de derta diferencia de
potencial, se: comporta como un circuito abierto (no conduce), y por encima de ella
· .. ·Como un circuito cerTado co11 muy pequeña resistencia 'e1éctrica.
.
.
'
Oebído Cl este comportamiento. se les sUele denominar rectificadores, ya que son
· · ·dispositivos copoces de. convertir' uoo corTíente alterna en rorríente continua.
27
Id.
. Respue$tn:
5fmboiQ:
T.pos de Oioclo:
•
~
.,_1J
<
DJOdode
.~ón
:Diodo ele
·potencia.
· DiodO ideo/:
Un rectificador idéaJ tiene: una resistencia nula en un sentido· y· resistencia
infinita en el opuesto, es decir solamente conduce en un sólo sentido. en sentido
opuesto se comporta como oisJante.
-. .
Curva · ·. Jj).
+
.,_.
- ~o.ld
+
' . . •'
·
·
·
·
car..cterilitic.a
O
·_.~- .. O O .. ~
O Rd=O/ld-,0
o
Vd
.!! .·.
+ Vd
+.
O • a----.0 F._f-o0 Rd =VdfO =
DíodD ret1l: e/emermJ
del d1odo
id~! al
OQ.
no /itll!tlJ' ·
los componentes electrónicos en donde la relación voltaje-corriente es no lineal
{no cumplen con kt 1ey de OHM), se denominan NO LINEALES: el diodo es uno de ·
estos ·elementos. EJ ténninó diodo· proviene del hecho· que· los _rectifirodores ·
tienen dos terminales activos o electrodos.
Mediante la . física del estado sólido ha sido
(
q V
)
·posible determinar Jo. relación existente entre fa . · J . ·. ·J . •···en~~
0
intellSidad de corriente y caída de tensión en un .
D ·
·
.
.
-l ·
diodo reat
\_
.
.Donde:
_;'.ID: .· itirtensidad de corriente a través
del diodo; ..
ionstarrte de Bott2mon :: 1_.38xlo-23(TrK) ..
K:
Yo: tensión -en los terminales del diodO.
28
- ·.r: · temperatum abSofuta( k).
0
- · Io: oorríefrte inversa de saturoción (uA).
- n:
constante empírica;= 1 (Si),= 2 {6e}.. ·
=
·carga del efect,ron 1,6 x !0-19C.
KT
ParG T=3()(1PK ~· VT= -=26mV
... Q;.
-
.
q
Curw mracterlstim de un diodo real:
t
15
Al
< so
.:e.·
• .. .\1 (liOftÍ(ls) •· ·
JCMJ
ISO
....
·i5
- --
. r /'> ·
•
1
1
.. . . .
•
el
·.
f.
i.
____
.,...,
loo .·.,. •·.Í::
,.
f
....
200
. .
.·~···
i.
· <i:-Y (~ob.iq~)
.g
.
Ca:nu:tcmtica .;;m
.·
·inv4!rsa
·.
.
.
.
. .
..
.. . .
..
Voflnje de i::odo1 Es mínimo voltaje de polarización directa requerido para que
el diodo inicie su conducción. En la práctica, paro efectos de aoolizar circui-tos con
diodos en polarización directo, se puede reemplazar a éstos por su ·voJtaje de
codo:
· Voltaje .de ct)dtJ: Es e:r mínimo voltaje polarización directa requerido para que
el diodo inicie su conducción. En la. práctica., para efectos de analizar cirruitos con
diodos en polarización directa., se puede reemplazar a éstos por su voltaje de
codo·.
. . . . .. .
.
de
. . • Vci:x:JO: . · Silicio ~ 0.7V • . . 6ermatlio .~ 0.2V.
·:· POLARIZACIÓN EN lOS DIODOS:
PtJiarimci6n directa: coondo eJ ·ánodo es más positivo que et
cátodo, el diodo CONDUCE y la intensidad ·de. corriente circula
·de ·ánodo a Gátodo. Coondo un diodo en bUen estadO e5 ·
pofar:ízado dí.rectamente. con el multímetro, dependiendo eJ tipa
de diodo, la Jecturo oscila entre 0.45 a 0.75.
··=~~~~;~=~:.~~:-=~·· ·-41·
i=O
29
es polarizado inversamente. con el multf"metro, ~CIIeitura: será: i
ot (lectura de valor mt1)' alto).
+~
DIODOS AVERIADOS:
- ·Olodo .•abierto~: Cuando
la Jecturo con el multfmetro, yo. sea en polarización
directa ó polarización inversa, marca 1 ó OL {lectura de vafór muy alto).
- biodo •cru;mdo": Cuando Ja lectura coi1 el multímetro, yo sea en polarización
directa ó polarización i:nversn, morca un valor próximo o CERn.
•!· ·ESPECIFICACIÓN bE LCi.S DIObOS DE UNIÓN:.
los diodos se espei:rrlcan por su intensidad de Corriente directo promedio (lo) en
Amperios y su voftaje pico inverso (PIV ó PRV).
Ejemplo: Un diodo que tiene. lo=2:Ay PIV=600V
·- · Soparto una corriente máxima de 2A· en polorizadón directa.·
- SOporta un voftoj.e.máximo de 600V en palarizodón inversa
5. INFORME PREVIO
Paro el aro de la práctica de laboratorio, los estudiantes deberón:
5.1. leer detenidamente el rontellidO de. eSto guia..
5.2.... Investigue y describo los corocterísticos de un transformador reductor de
voltaje:.
.
5.3.
.
. .
.
.
.
.
.
.
'
. .
.
.
. .
.
. .
.
Si i.m tro11sformodor está diseñado paro que eJ sumínistrtlJ"Ie 220V por el
bobíoodo primario. esté ~ por el bobinado· secundario 12V GOO toma
centraJ. Responda:
a) t .cuóf e5 lo. relaCión de transformación?· -'-'---'-~..,.--'-._....,...,----'---'-,.-'--~----'-.:...._b) Si por éJ bobinado securKkui"-io se debé entregar cómo máximo uria
intensidad de corriente de 2A. ¿Cuál será la máximo intensidad de
corriente que debe circular por el bobroodo primario?
30
·· e)· Cuál seni ell\f AWG indicado para ef bobinado primario?
d) Cuál será ell\f AWG indicado paro el bobioodo secundario? -~--5.4.. Investigue y r-esuma las oaracterísticas de un capacitor cenímico:
5. 5. · Investigue y resumo Jris coractedsticas· de un capacitar electrolítico: ·
.,
6 .. OESARR.OU.O DE lA PRACTICA
6 .1.
Pruebo. de diodos:
1.1t: Ubicar el selector del muftimetro en
*·
h escola que corresponde al
. d'iodo de unión (identi.ficada por su símbolo). ·
~ Polarice directamente el dfodo lN4004: conectando la punta •ROJA +"del
multimetro con el ánodo, y kl punta •NEGRA -• con el cátodo (el termiooJ
· · que se encuentra próxima a la franjo plateada del. diodo es el cátodo). ·
Anote en eJ recuadro, el valor mostrado en ef display del multímetro.
··:s. Pok:wice inversamente al diodo y moote en el recuadro, el valor mostrado· en
el display deJ muJtímetro.
31
. ~ Repita ei procedimiento con diodo 1N4007:
lectura en polorí.zación directa:
. . . Lectura en polarización inversa:
· .· ':Ji..
· iS..
Anote: sus observaciones:
Anote su rondusíóni _
. .
.
..
~ Anote ~:.U conclusión-:
6 . 2.
Curva oorocteñstica del Diodo:
1J¡
Implemente el circuito de la figura, conecte el osciloscópio y simuf€
Osciloscopio A .,.H...'o-.ri_:z_o-nt-a~l.,__ _....,;,..;,...____,...
1
.
fu:J,-
1.5V/60Hz
o
32
::i. Seleccione el canal A
como fuente horizotltal.
Io
·::.. En el recuadro siguiente, dibuje la: curva rorocteristica:
(vs) Vo.
identifique, r~istre. datos relevantes y anote sus observaciones.
·o····odo·c·.;...·~(t::n·~~
.. t~..~..:f?).:. ~,.;.
~--·~· .. , . ..-..,.~,...-:.~!' .. ~--~.:3,1,1
,:.s vi).:
..
·-
1
6.3. Rectificador de media Onda:
~
';:¡;,
Implemente el circuito de
Ja figuro adjunta.
Observe con el osciloscópio fa señol de salida
·vs· y compare con la
seiía1 de entrada •ve•.
A
.OsdJoscópio
8
J
:
(;> .·
·o·.
.
:
.
. ...
. ..
33
,
. '
:l:i..
En
et
recuadro
siguiente.. dibuje ·ve·
1< ':-
,;:~-~dacsenoidafy~illidarectificada·
:-:
y Vs... Identifique,
registre datos relevantes y onote sus
observaciones.
34
- -~ · Repita el procedimiento anterior, colocando un..capocitor .electro(ftjco de
· lOOuf en paralelo con el resistor. En la simulación ajuste las seooles: de
modo que coincidan en Sus: picos superiores.
·~---En ·el recuadro siguiente, dibuje "Ve" y Vs•;. Identifique; registre datos
_ relevantes y (lfÍOTe sus observaciones.
· · -·.-. ~tradasellQiqaly·salida rec~ad.~ y fiHrada~ . '
~----------------------~--------~
1
·;S. R~pítri otro vez, pero ion un· capocítor efectrolítico· de 2200UF.
81 eJ recuadro siguiente, dibuje ·ve• y· V$'. Identifique, registre datos
. . re.tevontes y anote sus observaciones..
1S..
~~--~----------------------------~
;_'~ :é1tradá~enoiaaf:ysetida-ree'tifiéadit y filtrada> . ':.
35
~
lCuál .es Ja función del capaéitor en ésta npHoodón?
··:;¡,_
Investigue. el sigmficadode rizado y factor de rizado:
~- Investigue y anote en
;IQ sígwente 'tabla, fas e5)>eCrtlrociones de fos diodo$
utilizados en ~la próctica.
Irwestigue y :anote en la siguiente iabfa,- las _espedficaciones _de _Jos .
. · capadtares urtilizados en ta práctica. ·
1:.\(.
.··
.
/:<;;
-l:i>-
,·.-
-Tjpo ,',
..,
;:cC<tplcit;(lnCio,
Anote su5 condusio~
6 .. 4.
RectificodOr <te· Onda -ooinptetci:
;:;o. · Impfemente el Circuito de la
figura adjunta.
;s.. Observe con el oséiloscópíO
la señof de salida ·vs- y
campare con · la · señal · de .
· . entrada "Ve".
36
~.
En
el
recuadro
siguiente, dibuje ·ve:a
y
Vs". Identifique.
registre datos relevantes y anote sus
observaciones.
1
7.
BIBUOGRAFfA
8~
ANEXO: USO DE COMPONENTES EN EL SIMULADOR PROTEUS
;¡;.
Ubicación de los generadores de seiíales en la ventana •p;ck l:>evíces•
Dispositivo
ubreria
SUb-categoría
Categoría
ALTERNATOR
ACTIVE
Souroes
Simulator Primitives
)- Componentes Dfodo, R y C:
librería
Sub-categoría
Categoria
DTODE
Rectifiers
Diodes
.BRIDGE
DIODE
Bridge Rectifiers
Diodes
RES
DE VICE
Generíe
Resisto.rs.
CAP-ELEC
DEVICE
Get1e.ric
Capacitors
¡¡... Instrumentos virtuales:
Niombre::
Ubicación:
Oscilloscope
barro de herTGmientas ~ •y¡rtuoJ Instruments Mode•
Dispositivo
1N4004
37
CAPITULO 3
DIODO RECTIFICADOR DE
MEDIA ONDA
1. OBJETIVOS:
a. Reconocer las características de los dispositivos
semiconductores
b. Realizar las medidas aplicando los diodos Rectificadores
c. f1elacionar los valores Teóricos con los Prácticos.
2. BASE TECNICA DE COMPONESTES: Desarrollarlo
OBLIGATORIO.
• Teoría.
• Curvas
• Tipos de Diodos
• Marcas
• Aplicación en la Electrónica.
3. PRACTICA EN LABORATORIO
a. Polarización Directa
XMM2
XMM3
XMMl
;,t;:t)
+
XMM4
V1
Realizar las medidas para R= 1 Ohm , R= 5 Ohm , R= 1O
Ohm
38
~
Vt
Vd
Id
Vr
Rteo
Rprac
Rdiodo
0.2 V
0.5v
0.7 V
1V
2v
3v
5v
10v
Resistencia dinámica del Diodo: Rd = vt - R
Id
b. Polarización Inversa
XMM6
XMMS
-=-v2
Realizar las medidas para R= 1 Ohm , R= 5 Ohm , R= 1O
Ohm
Vt
1
Vd
Id
Vr
Rteo
Rprac
Rdiodo
V
5v
10 V
15 V
20v
30v
50v
400v
39
Resistencia dinámica del Diodo: Rd
= ;; -
R
4. INFORME OBLIGATORIO DETALLANDO AL MÁXIMO TODAS LAS
OCURRENCIAS
a. Explique el comportamiento del diodo semiconductor en cada
caso.
b. Explique la necesidad de usar cada diodo diferente en cada
caso.
c. Realice las operaciones de cada tabla en forma teórica.
d. Realice la simulación de cada caso y grafíquelas.
40
CAPITULO 4
DIODO RECTIFICADOR DE
ONDA COMPLETA
1. OBJETIVOS:
a. Reconocer
las
características
de
los
dispositivos
rectificadores
b. Realizar las medidas aplicando los diodos Rectificadores
c. Graficar
las
curvas
de
operación
de
los
diodos
Rectificadores
d. Relacionar los valores Teóricos con los Prácticos.
2. BASE
TECNICA
DE
COMPONESTES:
Desarrollarlo
OBLIGATORIO.
•
Teoría.
1T
VALOR
MEDIO
VALOR
EFICAZ
Voc = - JVcttlt
To
VRMs=
1
T
-JV 2 ct}dt
To
VALOR PICO
PICO
VRMS=
0.707Vp
41
Considere las medidas en el transformador con toma central V - O - V
(15v-O -15v) /3A- SA
Vs1 =Vi1.
Rs1
Vs2 =Vi2
.. Rs2
·Vi= Vi1 +VI2
Vprms Vpmax Vp
de
Vs1
Vs1
Vs1
Vs2
Vs2
Vs2
max
rms
de
max
rms
de
Rs1
Rp
Rs2
3. EXPERIENCIA DE LABORATORIO.
RECTIFICADORES DE MEDIA ONDA
Polarización Directa: Vs= Vi
DIODE
·'&.
Vo
V
.
1
VDe ==0.318Vm
Para un R= 1 K Ohm completar la tabla midiendo lo siguiente:
Vide
Virms
Vimax
Vd
Vrdc
Vrrms
lrdc
lrrms
Rprac
Rteo
42
Graficar usando el Osciloscopio la forma de onda
----
1
1
~----
1
1
-1----- ..¡----
1
1
-~-----
1
1
1
1
1
1
t
1
'
''
1
.
1
'
1
1
1
•
1
1
•
•
•
1
•
1
1
1
•
•
1
1
•
1
1
•
-<11------+------~~o-
•
1
1
•
•
•
1
1
1
1
11
1
1'
1
't
1
'1
1
1
1
..
•
1
1
1
.
!
•
1
1
1
•
---
•
1
1
1
- - - - ..,¡- - - - -
1
1
'
•
1
1'
(
l
1
t
~---- -1- - - - - .1.- - - '
1
•
1
1
1
. .
1
•
1
1
1
--T- - - -
1
..
1
1
B
1
1
1
1
1
--- --i---- -:------:-----:----- ~-- ·-- -:-•
•
1
•
•
.
.. ..
____ ,.. _____ .. ___,_ ... _____... ___ --.---------- .
·---•
.
•
•
•
•
1
1
1
1
•
. .
1
1
1
•
1
1
1
1
1
•
•
•
1
1
1
•
----~-----r----~-----r----7-----r----¡----
,
'
'
1
•
1
•
1
•
1
'
1
1
1
'
1
1
1
'
•
1
1
•
•
•
1
•
1
1
•
1
1
1
.
1
1
1
1
1
1
1
'(
1
1
1
'l
•
1
1
:
1
1
:
1
•
.!
•
:T
1
----~----~-----~----~-----~----{-----~---'
•
1
1
.
•
t
1
1
1
1
1
f
. .
'
-----~----~-----~----4-----~----~-----~---•
l
1
1
-----t----~-----~----{-----~----1-----}----
. .
1
'
'
'
'
-----:---- -!- ----~---- -:----- i---- -;----- i- --•
•
.:
--1----·---1
1
-~
1
1
-----.i.----~-----1------~-----~-----~-----~----
'
----~-----~----~-----~----~----~-----·---1
1
. . . .
----r----,-----,-----,-----r----,-----r----
•
'
1
•
•
----~----~-----~----~-----~----4-----~---•
1
•
•
1
-·-- --:--·~ --~-- --1-----:-----1-----:--- --¡ ---'
1
1
~
'
•
. . .
.
. .
---t---..
.. ..
--- __, __ -- -- --...,:-- ---t-- ·--- . . --1
1
•
•
'
'
-----r----,-----r----,-----r----,-----r----
f
1- -- -- -1---- -1---- -
•
1
'
1
. .
----~----~-----~----~-----~----~-----~----
. .
--- --¡-----,--- --·,- -- --;-- -- ... - ----.---
.
. . . .
.
•
•
1
1
1
1
•
1
'
-----·----~-----~----{-----~----{-----~----
----~-----~----~-----~----~----~----·----
•
'
'
----,-----r----,-----r----,----~-----r---'
.
-----~----~-----~----~-----~----~-----~---'
r
r
r
r
r
1
1
t
1
r
•
-- --{---- -;--- --{-----:-- ---7-----:---- -t--------f----- ... ----·-"_. ____,_ ___
v:.
1
.. ---- _,_---- . . ----
•
•
1
1
1
1
1
1
1
•
1
•
1
----~----~-----~----~-----~-----~-----~----'
1
1
1
.. .
1
1
f
1
1
1
.
-----}----~-----~----~-----~----{-----~---•
•
1
•
1
1
1
•
..
1
1
1
1
'
'
•
----·----~-----~-----t-----~---1
1
•
•
1
1
1
..
-----~---1
•
1
1
1
1
1
.
-----r----,-----r----~-----r----~-----r----
Establezca las divisiones por tiempo que el osciloscopio le muestra para
hallar las medidas
•
Voltaje. Vertical = V/división
•
Sensibilidad. Horizontal= S/ división
Anote las Observaciones en la grafica
Polarización Inversa: Vs= Vi
DIODE
Ol---t~-----1-e-------o
Rl
V
.
1
V
o
43
Para un R= 1 K Ohm completar la tabla midiendo lo siguiente:
Vide
Virms
Vd
Vimax
Vrdc
Vrrms
Irde
lrrms
Rteo
Rprac
Graficar usando el Osciloscopio la forma de onda
----~----~-----~----~----·----·----~---'
..
1
1
1
•
'
'
'
.
. . ..
1
•
1
.
..
----{----~-----~----}----}----~----~---~
•
.
t
1
1
•
1
1
----~----~----~----~----·----~----~----
,
1
•
1
1
----,----~-----r----r----T----7----,---t
1
..
1
. . .
. .
.
.
'
•
•
1
•
1
1
1
1
•
•
1
----~----~-----~----1-----~----4----~---1
1
1
1
1
'
-- --·~-----:-- -- -:-----~---- ;----{---- {----
..
•
1
•
.
.
1
•
----~----~-----~-----~----~----~----~---'
'
1
1
1
1
1
1
'
1
'
''
t
1
1
1
1
1
'
1
•
•
•
•
•
•
•
1
1
1
1
•
1
•
•
1
•
1
•
•
1
1
l
1
1
--
. . .
---- ....
•
.
.
----~----·----~----~----~----~----
1
1
•
•
1
•
'
•
1
1
1
1
1
•
•
•
1
1
•
1
1
-----,-----.-- ---r----¡-·--- -,-----,-----.----1
1
1
1
'
---- í- ----.-----.-----.----- i- --- 'i---- ··----
. .
-~--
----~----;----¡----1----1----~-----r----
1
'
'
'
----~----~-----~----~----~----·----~---•
v:.
_____ ..,.--- _,...--- -+·--- _.,.-- ---11-----...--1
1
1
'
'
'
-----~----~----~----4----~-----~----~----
•
•
1
•
1
•
•
•
1
•
•
•
•
•
•
1
1
•
1
1
•
•
•
1
1
•
1
•
•
•
•
,
¡
:
1
•
•
1
•
•
1
•
•
1
- - - - . - - - - - , - - - - .. - - - - i - - - - . - - - - - . - - - - - . - - - - -
- - _ _ _ _ _ _ _ ; . , . _ - - - ¡. - - - _ . ; - - - - ..., _ _ _ _ _ , _ _ _ _
----:---- -}--1
1
1
1
-·~- ---{-
1
•
1
1
1
•
•
1
---- -t---- -1----- t-----
..
~
1
'
1
1
'
1
1
•
1
1
1
-1----T
1
--- -;---- -:-- --·-:- ---•
1
1
1
~--- -~----
1
1
1
1
1
_, ___ -
'
1
1
•
1
-~----
1
''
'
----1---- -:-·--- -:--·---}--- -}-----;- ----!-- -- -----:-- ---}-- --t-- --1-----:-----:-----:----•
•
1
•
1
•
1
1
1
1
1
1
•
1
1
1
•
1
1
1
•
1
1
- - - - .... - - __ ..,., _ _ _ _ _ , _ - - - · - - - - - __ ,. - - - --t - - •
•
•
1
1
•
. .
.
1
1
-'"'!1---•
'
'
----~----~-----~----~----~----t----~---1
1
1
t
'
'
'
~
~
----~----~-----~----~----~----·----~---•
1
1
•
1
•
-----.---1
'
1
-~---- -~---
•
.
•
1
--;:----
··- ---.-·-- --.----
1
•
1
1
•
1
1
1
•
1
1
'
'
'
'
•
1
•
1
----.---- -r--1
-·~-
•
1
1
1
. .
----.--- --s---- -.--- --t-- --.
.
•
1
•
•
1
•
1
•
1
1
1
1
'
'
- - -- -:---- -:-- - - - T---- ~----- ~---- -:- - - - -:- ---1
l
----,-.-·-·--~------
1
J
1
..
..
•
1
1
----- _.. _--·- -11----
'
-----~~-----
-----:-- ---;.----·i -----i -- ---i--- --:-----:----•
•
'
'
•
1
1
1
'
•
1
.
1
•
Establezca las divisiones por tiempo que el osciloscopio le muestra para
hallar las medidas
=
•
Voltaje. Vertical
V/división
•
Sensibilidad. Horizontal= S/ división
Anote las Observaciones en la grafica
44
RECTIFICADORES DE ONDA COMPLETA
Rectificador Tipo Puente:
Este tipo de rectificador es el más utilizado, generalmente se encuentra
encapsulado en un integrado MDA920.
+
R
Vo
Vi
D3
D4
Vs=Vi
Operación interna en arreglo puente
t o - - - - - -........,
·VQr··-~:\··
... ,
. . . - -.
.
V Vm.
r--
t
Dl y D4 se encuentran l--+---1abiertos
o--------'
V
-- .~. -- ...
Dl y D4 se encuentran conduciendo
·u·r\····
./.,.
---
R
-
V
o
.
. .. :i:
D2 y D3 se encuentran
conduciendo
l
D2 y D3 se encuentran abiertos
45
r- --e;----/4. . .
11\lN-.
~;_·.,--··· ¡___ -···+-;\·:
-- ... f
. ··-
... , .. ,.. -·- ..... ···-··:
.. t
·-~YJ~-~:::::::f}:::::;:S
.
VD
e
Lo Ideal
Rectificador de Onda
completa
Lo Real
V nc =0.636(Vm - 2VD)
V
=0.636Vm
oc
Para un R= 1 K Ohm completar la tabla midiendo lo siguiente:
Vs=Vi
Vide Virms
Vimax Vd1,2,3,4
Vrdc
Vrrms
Irde
Ir rms
Rteo
Rprac
Graficar usando el Osciloscopio la forma de onda
1
-----~---'
r
1
1
•
---·- -¡- - - •
1
1
1
-----·-----~----~-----~----·---1
1
1
1
1
1
1
1
•
'
1
1
1
1
1
t
•
1
1
-----.----- ; - - -- -¡-
1
1
•
1
•
'
'
1
'
1
v:.
1
1
1
1
1
1
.
1
-----~----~-----~----·----~-----~----~---1
1
1
1
1
1
1
'
1
•
•
1
1
1
1
r
'
1
1
1
t
•
•
1
1
1
•
t
1
•
•
----.---·--¡---- ---- .. -----.-----.- ----¡----- -.-----.----.----
1
1
•
•
1
1
1
•
1
1
1
•
1
1
•
1
•
1
1
1
1
1
1
•
•
1
1
•
•
1
1
1
1
•
1
1
1
1
•
•
•
1
•
1
1
1
1
1
1
1
1
1
1
1
1
1
1
•
1
1
1
1
1
1
1
1
1
1
1
1
•
1
1
-- ___ ...,____ -·- -- -----!1--- ---e----_,__-•
1
1
1
1
•
1
1
'
1
•
•
1
1
'
J
1
1
•
1
1
---f-- - - -
1
1
1
1
1
1
1
1
'
1
•
'
1
1
1
1
•
1
1
1
•
•
1
1
1
•
1
1
•
•
1
•
•
•
•
1
•
•
•
1
1
•
•
1
1
-----,----- -----,----- r---1
1
-----~----
i
-~-- ---~-----Y----
____ _._ ____ ..__ ---·..11---
--~
1
1
•
1
1
---- . . ____
1
1
•
•
1
- - _ _ _ ,._-- --~- - - -
1
1
1
1
1
----- r---1
1
1
•
1
1
1
1
1
-~----
J
1
1
•
-------+---- .... _- -- _... - --- ,._- -·-
-,----- r---- -,---- -r---- -¡----
-----~~------------~----~
1
1
1
•
•
1
1
•
1
•
1
•
1
1
1
1
•
•
•
1
1
____
1
1
1
1
•
•
1
•
..,¡o _ _ _ _ _ ._ _ _ _ _
1
1
1
1
1
1
1
•
1
1
.$---•
1
•
1
1
1
---------- ------------------------------- ------------------------------------------
46
---------- ----------- --------------- ---- ----- ---------------- ---------- ---- ----1
1
1
1
1
1
1
•
1
1
l
•
•
1
1
1
1
•
•
1
1
•
•
1
1
l
1
•
1
1
l
1
•
1
----~-----
:
:
:
:
:
:
:
t
-----r---- -----r---- ----,-----r---- ---- ----- ----,-----r---•
•
•
1
1
1
---- ----
T
1
-----'"'---- --t---- -1----- r---- . . ---- -1----- +---- -----1----- -----1----- r---- .,..._--- -1-----"'----1
1
'
1
1
1
1
1
1
1
1
1
•
1
1
•
•
1
•
•
1
1
•
•
1
1
1
•
1
1
1
1
1
•
•
•
1
•
~
•
•
•
1
1
1
•
1
1
1
1
1
1
a
1
1
1
1
•
1
1
1
1
.i
1
•
•
1
•
1
1
1
•
•
•
1
•
•
•
1
1
1
1
•
1
1
•
1
•
1
•
•
1
1
•
•
1
1
•
1
1
•
1
1
•
1
1
1
1
1
•
1
1
1
•
--- --¡¡----.-- -·- -.----- i - ----.-----.-----.---~
---
~
-~~-----~--
--------·--- _...,_--
--~-
1
---- ;----
-----.----- ¡ - - - - - . - - - - - . - - - - . - - - - -
---+ ----· ----- -·--- --~
--~----
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(
1
1
1
1
1
'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
l
1
1
1
•
•
1
•
1
•
1
•
1
•
•
1
1
1
1
1
•
1
1
1
•
1
1
1
1
1
1
•
¡
-----r----~----~-----¡----~-----~----¡----
-----,----
---- -~~-----~-- ------- ·-11--- ---«-·- --------- .. ---1
1
1
1
1
•
1
---
1
1
•
1
•
1
1
1
1
1
'
1
1
1
1
1
1
•
•
1
•
•
1
•
1
1
1
1
1
1
1
•
•
1
•
1
1
1
1
1
1
1
•
1
1
1
1
1
1
1
1
1
1
1
1
f
1
1
1
•
1
1
1
1
1
1
1
1
1
1
1
•
1
1
1
1
1
1
1
,
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
t
1
1
1
-----~----~-----~----~----~-----~----¿
-----r----
-----r----r----~-----~----1----
-----~----
-----~----~----~-----~----~----
1
____
1
---- _.,_1 --- -·---....1 ___ - _,... ---- .. ---1
~
-----r----¡----~-----;----,-----r----¡----
-- --t - - - -
1
1
1
1
1
1
1
1
--~-
1
1
1
-----~----¡----~-----c----1----
1
•
-~~------
.. -----.-- ·-
•
1
1
1
l
1
1
1
1
1
1
1
(
1
1
t
•
1
1
1
•
1
1
•
1
•
1
•
1
1
'
1
1
1
1
1
1
1
1
1
1
•
1
1
•
1
1
1
1
1
1
1
1
1
•
•
•
•
1
1
1
1
1
1
1
1
1
•
•
1
•
•
1
•
•
1
Establezca las divisiones por tiempo que el osciloscopio le muestra para
hallar las medidas
•
Voltaje. Vertical= V/división
•
Sensibilidad. Horizontal= S/ división
Anote las Observaciones en la grafica
Rectificador Tipo Toma Central:
01
·vn·lVIIl/2
./~#
' · \ ••
t
Para un R= 1 K Ohm completar la tabla midiendo lo siguiente:
Vs= Vi1+
Vi2
47
Vide
Virms
Vimax
Vd
Vrdc
Vrrms
Irde
Ir rms
Rteo
Rprac
Graficar usando el Osciloscopio la forma de onda
4. INFORME OBLIGATORIO DETALLANDO AL MÁXIMO TODAS
LAS OCURRENCIAS
a. Explique el comportamiento de los diodos rectificadores en
cada caso.
b. Explique la necesidad de usar cada arreglo de los diodos en
cada caso.
c. Realice las operaciones de cada tabla en forma teórica.
d. Realice la simulación de cada caso y grafíquelas.
48
CAPITULO 5
DIODOZENER
1. OBJETIVOS:
a. Reconocer las características de los diodos Zener.
b. Realizar las medidas aplicando los diodos Zener
c. Relacionar los valores Teóricos con los Prácticos.
COMPONESTES:
2. BASE
TECNICA
DE
OBLIGATORIO.
• Teoría.
• Aplicación en la Electronica.
Desarrollarlo
3. PRACTICA EN LABORATORIO
a. Polarización Directa
XMM4
Considerar la potencia de diodo ZenerPz=Vz * lz de modo que lz
no supere en el circuito y dañe al diodo Zener.
Realizar las medidas para R= 700 Ohm encontrar el rango de
VMminyVMmax
VAA
VOZ
~r
IZ
--vr
~
~UIUUO
3v
!>V
/V
10V
1;.( V
1;-iV
1:3V
LUV
49
b. Polarización Inversa
XMMl
2700
10V
1k0
XMMlO
XMM9
~
- +
VAA
VR
V RL
Vz
IR
Iz
I RL
3v
5v
7v
10 V
12 V
13 V
15v
20v
50
c. Encontrar en forma práctica los rangos para hallar los Valores
mínimos y máximos en todas las medidas.
d. Considerar la potencia de diodo ZenerPz=Vz * lz de modo que
lz no supere en el circuito y dañe al diodo Zener.
4. INFORME OBLIGATORIO DETALLANDO AL MÁXIMO TODAS
LAS OCURRENCIAS
a. Explique el comportamiento del diodo semiconductor en cada
caso.
b. Explique la necesidad de usar cada diodo diferente en cada
caso.
c. Realice las operaciones de cada tabla en forma teórica.
d. Realice la simulación de cada caso y grafíquelas.
51
CAPITULO 6
TRANSISTORES
1. OBJETIVOS:
a. Reconocer las características de los Transistores Bipolares.
b. Realizar las medidas aplicando los Transistores Bipolares
c. Relacionar los valores Teóricos con los Prácticos.
2. BASE TECNICA DE
COMPONESTES:
OBLIGATORIO.
• Teoría.
Los transistores son:
Dispositivos de tres terminales
la corriente o la tensión en un terminal
(terminal de entrada)
Controla el flujo de la corriente entre los
otros dos terminales.
Desarrollarlo
Tipos de Transistores Bipolares
TENSIONES Y CORRIENTES
Las corrientes entre terminales dependen de las tensiones que se
apliquen. Para un transistor NPN y tomando el terminal de emisor
como referencia de tensión (el más usual):
VBE=VB-VE
VCE=VC-VE
~ ~J')v.
"~
e
F l t ~ti
Aplicando la ley de Kirchoff (corrientes que entran =corrientes que
salen):
lE= lB+ IC
Se puede calcular la relación entre las corrientes de colector y de
base:
52
r
~
F: factor de ganancia en corriente.
comerciales
F: 150-200 en transistores
Indica que la corriente de colector es proporcional a la de base
LINEA DE CARGA: CALCULO DEL PUNTO DE OPERACION
Si un transistor trabaja dentro de un circuito 7 Se dice que el transistor
está polarizado.
El conjunto de fuentes de tensión y resistencias se le denomina RED DE
POLARIZACIÓN
Para resolverlo, se deben cumplir:
•
•
Las características de salida
Las ecuaciones de las mallas del circuito en que se
encuentre:
r.- ------------------------------:
VBE""0,7V
L!~-~-~~~-~~~-~-~~-_¡
1Vm=VBE+IaRa
l _ V88 -VBE
8 -
R8
2-0,7
16000
1Vce=Va+ le Re 1Línea de carga
=8 1,25 uA
·
VeE = Vee- le Re=
10-8,125 = 1,875 V
·.
Rc=1 kQ
J
P= 100
REF16 k.n
- Vcc=10 V
53
Punto de Operación Estacionario:
!&
1-------~-------------"~y~~CORTE
Vcc= 10 vVcE
3. PRACTICA EN LABORATORIO
a. Implemente el siguiente circuito y encuentre el punto de
operación:
..
54
lc(mA.)
125
l
I,r«Jp.-1
I..-5Cp;J
10.0-
1¡¡=40,it4
7. 5
lj.-!0¡.<{
5.o
IJ1"1/JtL~
2. 5
o
VBB
(v)
V CE IC
(v)
(m A)
irlOp;f
1
1
1
1
5
10
15
20
lB (uA) VRB
_(vl
VRC
VBE
(_v)
_{v)_
8
0.7
0.8
0.9
1
1.2
1.4
1.6
1.8
2
2.2
2.3
2.4
2.5
b. Implemente el siguiente circuito y encuentre el punto de
operación:
12U
55
VBB
VCE
(v)
(v)
IC
(mA)
lE
(mA)
18
VR1
VR2
VRC VRE
vx
(uA)
(v)
(v)
(v)
(v)
(v)
8
S/F
0.7
0.8
0.9
1
1.2
1.4
1.6
1.8
2
2.2
2.3
2.4
2.5
Realice las medidas indicadas en el circuito
4. INFORME OBLIGATORIO DETALLANDO AL MÁXIMO TODAS
LAS OCURRENCIAS
a. Explique el comportamiento del Transistor Bipolar en cada
caso.
b. Explique la necesidad de usar cada Transistor Bipolar
diferente en cada caso.
c. Realice las operaciones de cada tabla en fonna teórica.
d. Realice la simulación de cada caso y grafíquelas.
56
CAPITULO 7
TRANSISTOR BIPOLAR
1. OBJETIVOS:
a. Reconocer las características de los transistores Bipolares
b. Realizar las medidas e los transistores Bipolares
c. Graficar las curvas de operación e los transistores Bipolares
d. Relacionar los valores Teóricos ce los transistores Bipolares.
2. BASE
TECNICA
DE
COMPONESTES:
Desarrollarlo
OBLIGATORIO.
•
Teoría
3. EXPERIENCIA DE LABORATORIO
REALICE LOS CALCULOS PARA HALLAR EL PUNTO: Q CORTE, Q
ATURACION Y Q EQUILIBRIO O Q ACTIVO PARA QUE SUS
MEDIDAS ESTEN EN EL PUNTO MEDIO:
57
Corte-
a. Halle en Forma TEORICA e Implemente el siguiente
circuito y encuentre el punto de operación, Marque e
indique los valores que hacen posible los 3 estados:
XMM3
15V
f-\-J
-
125
1'
Jr10p!
l~¡d
[¡F50~t~
10.0,
i,~,u!
1.5
1r30JLi
5.0
1¡¡=20;lit
2.5
.o
1,=10¡8
5_
lO
15
20
Va.{l1
58
VBB
(v)
VCE
(v)
IC
(mA)
lB (uA)
VRB
(v)
VRC
(v)
VBE
(v)
B
0.7
0.8
0.9
1
1.2
1.4
1.6
1.8
2
2.2
2.3
2.4
2.5
b. Halle en Forma TEORICA e Implemente el siguiente
circuito y encuentre el punto de operación, Marque e
indique los valores que hacen posible los 3 estados,
Compare Ahora Conectando El Switch Y Halle El Valor
Mínimo , Valor Medio O Equilibrio Y Valor De Saturación
Para Usar Como Amplificador:
18V
59
VBB VCE
(v) (vJ
IC
lE
lB
JmA) (mA) (uA)
VR1 VR2 VRC VRE vx B
(v) (v) (v) (v) (v)
S/F
0.7
0.8
0.9
1
1.2
1.4
1.6
1.8
2
2.2
2.3
2.4
2.5
Realice las medidas indicadas en el circuito
4. INFORME OBLIGATORIO DETALLANDO AL MÁXIMO TODAS
LAS OCURRENCIAS
a. Explique el comportamiento de los diodos rectificadores en
cada caso.
b. Explique la necesidad de usar cada arreglo de los diodos en
cada caso. .
c. Realice las operaciones de cada tabla en forma teórica.
d. Realice la simulación de cada caso y grafíquelas.
60
CAPITULO 8
RECTIFICADOR DE SILICIO
CONTROLADO
1. OBJETIVOS:
a. Reconocer las características de los Transistores Bipolares.
b. Realizar las medidas aplicando los Transistores Bipolares
c. Relacionar los valores Teóricos con los Prácticos.
COMPONES TES:
TECNICA DE
OBLIGATORIO.
• Teoría.
Los transistores son:
Dispositivos de tres terminales
La corriente o la tensión en un terminal
(terminal de entrada)
Controla el flujo de la corriente entre los
otros dos terminales.
2. BASE
Desarrollarlo
(umu(l
Tipos de Transistores Bipolares
TENSIONES Y CORRIENTES
Las corrientes entre terminales dependen de las tensiones que se
apliquen. Para un transistor NPN y tomando el terminal de emisor
como referencia de tensión (el más usual):
VBE=VB-VE
VCE= VC- VE
.le
t
Aplicando la ley de Kirchoff (corrientes que entran =corrientes que
salen):
lE= lB+ IC
Se puede calcular la relación entre las corrientes de colector y de
base:
F : factor de ganancia en corriente.
comerciales
F : 150-200 en transistores
61
Indica que la corriente de colector es proporcional
a la de base
LINEA DE CARGA: CALCULO DEL PUNTO DE OPERACION
Si un transistor trabaja dentro de un circuito ~ Se dice que el transistor
está polarizado.
El conjunto de fuentes de tensión y resistencias se le denomina
RED DE POLARIZACIÓN
Para resolverlo, se deben cumplir:
• Las características de salida
• Las ecuaciones de las mallas del circuito en que se
VBE"'0,7V
encuentre:
2 -0,7 =8~25 A
16000
1 lh 100
1-t
r·----------------------------:
l_!q_~-~~l!-~-~:~_2_~__f!!!':__ ¡
1Vce= Va=+ le Re 1Línea de carga
Va:= Vcc-lcRc=
1O - 8,125 = 1 ,875 V
Vcc;=10 V
Punto de Operación Estacionario:
r------------,
; 1.,_= ~!~ mA_j
JB =81,25JtA
VGE
·---~~~-------~~~
o.-
~
1,875 V
CORTE
Vcc=10VVCE
62
3. PRACTICA EN LABORATORIO
a. Implemente el siguiente circuito y encuentre el punto de
operación:
Id.mA)
¡
12.5
~
10.0-
1DY
~
Rl
V'/'w
UOkn
i~Jl{
7.5
:XIDU
I,•3!)f'.i
lp1
5.o
.ljr:!OM
5
frUI¡t!
o
V88
(v)
~
V CE IC
(mA)
(v)
18 (uA) VR8
(v)
1(1
VRC
(v)
V8E
(v)
'
20
15
lcr{fl)
8
0.7
0.8
0.9
1
1.2
1.4
1.6
1.8
2
2.2
2.3
2.4
2.5
Implemente el siguiente circuito y encuentre el punto de operación:
63
l!UM6
,.RE
lf['·""
1
VBB
(v)
lE
lB
VR1
VCE IC
(v) _(mAJ 1mAl (uAJ (v)
VR2 VRC VRE vx
(vj_ 1v) (v) (v)
8
S/F
0.7
0.8
0.9
1
1.2
1.4
1.6
1.8
2
2.2
2.3
2.4
2.5
Realice las medidas indicadas en el circuito
64
4. INFORME OBLIGATORIO DETALLANDO AL MÁXIMO TODAS
LAS OCURRENCIAS
a. Explique el comportamiento del Transistor Bipolar en cada
caso.
b. Explique la necesidad de usar cada Transistor Bipolar
diferente en cada caso.
c. Realice las operaciones de cada tabla en forma teórica.
d. Realice la simulación de cada caso y grafíquelas.
65
E. RESULTADO
El resultado de la presente investigación es la elaboración del texto
universitario titulado Texto:
COMPONENTES
"LABORATORIOS
ELECTRONICOS
DE DISPOSITIVOS Y
APLICADOS
A
LA
INGENIERÍA
MODERNA", el cual se adjunta al presente. El texto contiene Ocho capítulos.
La teoría desarrollada en el texto, responde a los aspectos básicos de la
Teoría de Dispositivos y Componentes Electrónicos. Las experiencias
prácticas en el texto, tienen el propósito de dar las pautas de la aplicación de
la teoría desarrollada, con demostraciones.
F. DISCUSION
El texto universitario titulado "LABORATORIOS DE DISPOSITIVOS Y
COMPONENTES
ELECTRONICOS
APLICADOS
A
LA
INGENIERÍA
MODERNA", es el resultado de la investigación a que se refiere el presente
informe, se caracteriza por presentar la experiencia de manera resumida.
Las experiencias han sido cuidadosamente seleccionadas de tal forma que
nos permitan comprobar las leyes y principios fundamentales de la teoría
sobre Dispositivos y componentes Electrónicos.
66
G. REFERENCIA
1. Stanley Wolf y Richard F.M. Smith. "Student Reference Manual for Electr
onic lnstrumentation Laboratories"'. Prentice Hall, 1990 (existe edición en
español).
2. Paul Horowitz y Winfield Hill. "The Art of Electronics"'. Cambridge Universi
ty Press, 1989.
3. Thomas C. Hayas y Paul Horowitz. "Student Manual for the Art of
Electronics". Cambridge University Press, 1989.
4. E. Batalla Viñals et al. "Problemas de Electrónica Analógica". Univ. Polité
cnica de Valencia.
G. APENDICE
Fuente :Circuito de Flujo de voltaje para una amplificación de voltaje o
corriente
Rs=16 kfi
v~E· ..
VC!F10 V
Fuente: Elaboración de amplificador propia
67
H. ANEXOS
Fuente: El flujo de voltaje vs el voltaje para el punto de operación del
amplificador
!JrtmA)
5
l¡FSJ¡rt
12 l.
10:.o.
l~JI!Í
I~¡tf
1_5
4-30p~
5_o
1~=10p.~
2_ 5
o
lr!Op;4
1
1
1
1
5
10
15
20
"Student Manual forthe Art of Electronics". Cambñdge University Press, 1989.
68