Download Sin título de diapositiva

Document related concepts
no text concepts found
Transcript
IUMA
Projects and activities
Las Palmas de G.C., Dec. 1999
Examples of projects






Creation of a ciphering engine using RISC and
cryptographic circuits for ISDN applications
Implemention of a VIS in SPARC V.8 for cheap
multimedia applications
High-level synthesis system for DSP circuits
Implementation of electronic systems in MCM
with Cadence/Allegro
Algorithms for multimedia in the MVP
(TMS320C80) development system.
...
Las Palmas de G.C., Dec. 1999
JavaRISC Project



Hardware implementation
of the JAVA Virtual
Machine usign RISC style
architecture
Synthetized from a RT
Level VHDL description
using Synopsys and
Cadence
Implemented in CMOS
ES2 0.7 mm technology
Las Palmas de G.C., Dec. 1999
T-DES Project




Interchip Digital Link Interface
for direct connection to ISDN
Triple DES Cipher Algorithm
Synthetized from VHDL using
Synopsys and Cadence
Results for ES2 CMOS 0.7 mm:




4.944 gates
59015 transistors
15.6 mm2
Peak throughput: 256 kbps
Las Palmas de G.C., Dec. 1999
CEIP Project: Cipher Engine for ISDN

Includes:





2 Flash-RAM Chips
4 Static RAM
1 microcontroller RISC
15 T-DES CFB Chips
1 ASIC
Las Palmas de G.C., Dec. 1999
ATM project
Micro machined alignment
Multi Chip module
H-GaAs-IV
Laser
diode
Photo
diode
ATM Physical Layer
Trans conductance
amp
Clock recovery
Cell delineation
Error recovery
HEC generation
16
16
C-GaAs
ATM Layer
VPI label translation Policing
Routing label
16
H-GaAs-IV
Switch
fabric
16
RX/TX
SRAM
CPU
Operations and
management
Las Palmas de G.C., Dec. 1999
ATM Project (FIFO)
Las Palmas de G.C., Dec. 1999
ATM Project (test bench)
Las Palmas de G.C., Dec. 1999
ATM Project (test bench)
Las Palmas de G.C., Dec. 1999
Fast Fourier Transform Project
Processing unit  process every butterfly
 Routing unit

Fi [k ]
Fi1[k ]
M
Fi 1[ k  i ]
2
Processing
unit
Routing
unit.
Fi [k 
Mi
]
2
Las Palmas de G.C., Dec. 1999
Fast Fourier Transform Project

Processing Unit
a   a  b  WMk
b  a - b  WMk
+
a
a´
i
i
b

WNm
+
-
-
b´

 2k 
 2k 
  bI  sen

a R  a R  bR  cos


 i 
 i 


 2k 
 2k 
 - bR  sen

a I  a I  bI  cos


 i 
 i 


 2k 
 2k 
  bI  sen

bR  a R - bR  cos


 i 
 i 


 2k 
 2k 




bI  a I - bI  cos
- bR  sen

 i 
  i 

Las Palmas de G.C., Dec. 1999
Fast Fourier Transform Project
1. Initial stage
1
2. Scale factor
3. radix2/radix4 combination
N
-1
2
K n   (1  d   4

- 2i
3
)
i 0
4
2
4. di coefficients stored in a
ROM
7
5. Post-processing
5
6. Vector Merging Adder
6
7. Control Unit
Las Palmas de G.C., Dec. 1999
Fast Fourier Transform Project

Convergence and scale factor for N=16
and  = /3
radix2
1,4
radix4
repeat scal.
1,2
1
Escale
0,8
factor
0,6
0,4
0,2
zi
0
Convergence
-0,2
0
2
4
6
8
10
12
14
16
18
Iteration
Las Palmas de G.C., Dec. 1999
Fast Fourier Transfor Project (results)
Delay
Unit
Delays and power
dissipation
FFT Processor
characteristics
Radix2
Radix4
D-FF
Buffers
VMA
Process
spread
FF1h 100º
TT 75º
SS2 0º
FF1h
100º
441
626
173
48.2
744
Tcycle
(ns)
1.15
1.20
1.40
TT
75º
499
650
191
60.0
810
Power
SS2
0º
FF1h
100º
721
741
225
102.4
1070
10.7
17.8
1.93
3.30
695
TT
75º
SS2
0º
9.0
15.3
1.92
2.66
588
7.3
10.2
1.3
1.8
390
Frecuency
(MHz)
870
825
700
Power = 12,5 W
Area = 5732 x 6070 mm2 (35 mm2)
Encapsulated = LD256
Las Palmas de G.C., Dec. 1999
t ciclo  t D - FF  tbuffer  t radix4  t setup  t skew
Fast Fourier Transfor Project (results)

Comparison with other architectures
Type
Programmables
Multiprocessors
Chip sets for FFT
ASICs
Company and model
Analog Devices ADSP-21060
Intel 860 XP
Texas Instruments. TMS320C80
Sharp Electronics LH9124/LH9320
Plessey PDSP16510
Butterfly DSP BDSP9124
Dassault Electronic UFFT (6 IC)
IUMA CFFT CORDIC based
1024 points
CFFT (ms)
460
550
163
87
96
54
12,8
8
Las Palmas de G.C., Dec. 1999
VSC851 Project

The Crosspoint Switch has 32 data inputs and 32 data outputs. Any input can
be multiplexed to any, some or all outputs. Signals in data path are fully
differential to minimize duty cycle distortion and achieve an excepcional
signal fidelity.
The switch is configured
by sequentially loading each
multiplexer’s 5-bit Holding
register with the desired
input address D[4:0].
When complete, a high pulse
is applied to GSTROBE and
all new configurations are
simultaneously transferred
into the switch multiplexers.
Switch
Matrix
I+[0:31]
Z+[0:31]
32x32 Switch
Matrix
I-[0:31]
Z-[0:31]
Control
Logic
A[4:0]
BROADCAST
FLOWTHRU
D[4:0]
5 to 32
decode
32
32
5
32
32x5 Holding
Registers
32x5 Control
Latches
0,1, ... ,31
LSTROBE
GSTROBE
Las Palmas de G.C., Dec. 1999
VSC851 Project
Control
Logic
Switch
Matrix
Las Palmas de G.C., Dec. 1999
VSC851 Project
Las Palmas de G.C., Dec. 1999
VSC851 Project (testing procedure)
 In order to test the 1.6 Gb/s 32x32 Crosspoint Switch, a characterization
board was designed. This board allows to measure the following
parameters:
• Propagation Delay.
• Duty Cycle Distortion.
• Output Skew.
• Minimum Input Pulse Width.
• Maximum Bit Rate.
• Jitter & Interchannel Coupling.
(Channel 0) 2 sets side launch SMA
1 st
Crosspoint
Switch
31
All 50 terminated
differential connections
2 nd
Crosspoint
Switch
( DUT)
In BROADCAST mode
Test Out
Control DIP switches
Las Palmas de G.C., Dec. 1999
32
VSC851 Project (testing procedure)
Las Palmas de G.C., Dec. 1999
VSC851 Project (testing results)
 Four boards with chips from different lots were tested. According with the
test, the Crosspoint Switch is fully functional @1.6Gb/s with a 90% of
nominal differentialDescription
amplitude. Min Max
Conditions
Minimum input pulse
width
600
ps
—
Propagation delay
—
1.88 ns
Duty cycle distortion
—
150 ps
Output to output skew
—
250 ps
Maximum bit rate
—
1.8Gb/s
Interchannel coupling
—
94 mV
Worst case 60/40 input duty
cycle
—
At 1.6 Gb/s
On a given part broadcast
mode
Differential ECL output
voltage higher than 600mV
At 1.6 Gb/s
Las Palmas de G.C., Dec. 1999
VSC851 Project (comparative results)
Product
MaximumData Rate
Propagation Delay
Output to Output skew
Power Supplies
Power Dissipation
TQ8032
800 Mb/s
2.3 ns
500ps
-5V& +5V
13.8 W
IUMA32x32
1.8 Gb/s
1.88ns
250ps
-2V& +3.3V
9W
Las Palmas de G.C., Dec. 1999
VSC851 Project








Power consumption: 9 W
Duty cycle distortion < 150 ps

1st case: 5 ms to “0” and 1010 ... = 265 ps

on “1”, 142 on “0”
2nd case: 010101 ... and 00000101
Propagation delay = 1,8 ns
Output to output skew < 300 ps
Minimum pulse width = 720 ps
Packaging = 256-pin LDCC
Power supply: -2V y 3,3 V
Output level: 3,3 V TTL y ECL
differential
Las Palmas de G.C., Dec. 1999
OLYMPO Project
Las Palmas de G.C., Dec. 1999
Summary
Research and development projects funded
by European Union, Spanish government ,
Canary government and industries.
 CMOS, GaAs and SiGe technology based.
 Projects for digital processing,
communications, computers, CAD tools...
 Around 20 researchers involved in these
projects.

Las Palmas de G.C., Dec. 1999