Download El Átomo - Colegio Buen Pastor

Document related concepts
Transcript
TEMAS 3 Y 4
Física y Química
1º ESO:
VIAJE AL
INTERIOR
DE LA
MATERIA
( I y II)
“Desgraciados los
hombres que tienen todas
las ideas claras”
– Louis Pasteur
p á g i n a P á g i n a 1 | 32
11
1
Todas las sustancias que encontramos a
nuestro alrededor, como el agua, el aire,
las rocas e incluso tú, están hechas de materia. Existen millones de tipos distintos de
materia en la naturaleza, pero todos están
formados con solo 92 elementos químicos. A su vez, los elementos químicos están compuestos por unas pequeñas partículas llamadas átomos. ¿Sabes qué es un
átomo? ¿Los átomos son indivisibles o están formados por partículas aún más pequeñas? ¿Se pueden enlazar unos átomos
con otros?
"Los grandes espíritus siempre han tenido
que luchar contra la oposición feroz de
mentes mediocres"
1.- Los átomos: pequeñas partículas de
materia.
2.- Los elementos químicos.
3.- Las moléculas: agrupación de átomos.
4.- Las fórmulas químicas: un código de
símbolos y números.
5.- Las moléculas del aire, del agua, de la
Tierra y de los seres vivos.
p á g i n a P á g i n a 2 | 32
1.- LOS ÁTOMOS: pequeñas partículas de materia.
Mira detenidamente lo que te rodea: el ordenador, los libros, los muebles de tu habitación
o las distantes estrellas. Todo lo que ves está formado por materia. Pero, ¿de qué está hecha la materia? Tal vez conozcas la respuesta.
La materia está constituida por unas pequeñas partículas denominadas átomos.
Y, ¿cómo son de pequeños los átomos? Pues más de lo que te puedes figurar. En un milímetro caben millones de átomos alineados. Para hacerte una idea de la asombrosa pequeñez de los átomos, vamos a hacer un viaje imaginario a través del Universo reduciendo
paulatinamente nuestra escala de observación.
3
1.1. Estructura de los átomos: un interior
asombroso
Galería 1.1 Átomos
Imagínate que empiezas a encogerte hasta alcanzar
el tamaño de un átomo y que te aden- tras en su
interior. ¿Sabes lo que verías?
Descubrirías que en el átomo hay dos zonas
diferentes: la corteza, en la que se mueven los
electrones, y el núcleo, que aunque es 10 000
veces menor que el átomo, contiene ca- si toda la
masa. En él se agrupan los protones y los neutrones.
Un átomo está formado por otras partículas
aún más pequeñas, las partículas suba- tómicas,
llamadas protones, neutrones y electrones.
Los átomos se diferencian unos de otros por el número de protones que tienen en el núcleo.
Partícula subatómica
Carga eléctrica
Masa (u)
Protón
+
1
Neutrón
0
1
Electrón
-
0
Carga eléctrica y masa de las partículas subatómicas. Se usa como unidad de masa atómica (u) la
masa de un átomo de hidrógeno, a la que se le da
el valor de la unidad.
ACTIVIDADES
1.
¿Qué es un átomo? ¿Cuántas zonas se distinguen en un átomo?
2.
¿Cuáles son las partículas subatómicas que forman los átomos? Descríbelas.
4
2.- LOS ELEMENTOS QUÍMICOS
De la misma manera que no todas las personas somos iguales, los átomos tampoco son
iguales. Existen diferentes clases de átomos y cada una de ellas corresponde a un determinado elemento químico.
Cada elemento químico representa a todos los átomos de una misma clase que tienen idéntico número de protones en su núcleo.
2.1. El Sistema Periódico: ordenando elementos
En la actualidad se conocen algo más de 118 elementos químicos, de los cuales 92 son
naturales y el resto se han obtenido artificialmente en el laboratorio. Cada uno de ellos se
identifica mediante un nombre y un símbolo.
5
Los elementos químicos están ordenados en el Sistema Periódico. Esta distribución
se realiza en orden creciente de su número atómico.
El Sistema Periódico de los elementos está organizado en 7 filas horizontales, llamadas períodos, y en 18 columnas verticales, llamadas grupos o familias. Los elementos del mismo
grupo tienen propiedades parecidas.
El Sistema Periódico de los elementos es una tabla en la que cada elemento químico ocupa una casilla. En la parte izquierda se colocan los elementos con propiedades metálicas
(zona amarilla). En la parte derecha de la tabla (zona azul) se agrupan los elementos no metálicos; y en el límite entre los metales y no metales (zona verde) se encuentran los elementos semimetálicos.
6
Número atómico. Número de protones que tiene cada átomo de un determinado elemento. Coincide con el número de electrones y con el orden del
elemento en el Sistema Periódico.
Símbolo químico. Representa el elemento correspondiente. El símbolo
puede ser la letra inicial del nombre del elemento o, si hay más de un elemento con
la misma inicial, puede llevar una segunda letra tomada del nombre. La primera letra
se escribe en mayúscula y la segunda en minúscula.
Nombre del elemento. Deriva, generalmente, del nombre originario en latín. Cuando se
nombra en latín, su símbolo químico no se corresponde con las letras del nombre del elemento.
Nombre del elemento
Nombre en latín
Símbolo
Sodio
Natrium
Na
Hierro
Ferrum
Fe
Oro
Aurum
Au
Plomo
Plumbum
Pb
Algunos nombres hacen referencia a científicos o países. Otros tienen origen mitológico.
Nombre del elemento
Símbolo
Referencia
Einstenio
Ei
Albert Einstein
Francio
Fr
Francia
Helio
He
Helio, dios Sol
Paladio
Pd
Palas, diosa de la sabiduría
PIENSA…
Del laboratorio del profesor Xela se ha recibido un e-mail en el que, entre otras descripciones, se puede leer:
7
¿De qué elemento químico se trata? ¿Cuál es su
número atómico? ¿Qué casilla del Sistema Periódico ocupa? ¿A qué período y a qué grupo pertenece?
Galería 1.2 Elementos químicos
ACTIVIDADES
3 ¿Qué es un elemento químico? ¿Cómo se ordenan
y clasifican? ¿Con qué criterio?
4 Escribe el nombre de los elementos cuyos símbolos son: Ca, Fe, K, Hg, Au, Cl, Ni, Ag, Kr.
CONCEPTO DE Nº ATÓMICO Y DE Nº MÁSICO
Los átomos son partículas eléctricamente neutras, es decir, tienen
el mismo número de protones
que de electrones. A dicho número se le denomina número atómico y nos indica también el orden que caracteriza al elemento químico en el sistema periódico; se representa por la letra Z.
El número másico es el número de nucleones del átomo (protones + neutrones); se
representa por la letra A. Se deduce de ambas definiciones, que:
8
Z = protones = electrones = n°orden en la tabla
A = protones + neutrones
A-Z = n°de neutrones
El número de electrones, protones y neutrones es diferente para cada tipo de átomo.
El elemento se puede representar de la siguiente forma:
Donde X es el símbolo del elemento, A su n° másico y Z su n° atómico.
Ejemplo:
El elemento sería nitrógeno. Su n° másico (A)=14 y su n° atómico (Z)=7
El nitrógeno tendrá según el ejemplo:
7 protones en el núcleo
7 electrones en la corteza
y ocupará el lugar n° 7 en la tabla periódica.
A-Z = 14-7 = 7 n° de neutrones
MASA DE LOS ÁTOMOS:
La masa del electrón es tan pequeña que se desprecia a la hora de calcular la masa
de los átomos.
MASA = PROTONES + ELECTRONES
Para calcular la masa del electrón escribe 31 ceros seguidos y, a continuación el número 91. Pon una coma detrás del primer cero (Kg.).
ISÓTOPOS
Son átomos de un mismo elemento que tienen distinto número másico. Por tanto,
tienen el mismo Z (mismo número de protones) pero distinto número de neutrones.
Ej.: El cloro (Cl) representado en la tabla corresponde a la suma de sus dos isótopos:
Los cuales tienen el mismo Z (17) y distinto número másico A (20 y 22). Ambos se
diferencian por lo tanto en el número de neutrones.
A = 20
A-Z = n° neutrones
20-17 = 3 neutrones tendrá el primer isótopo
22-17 = 5 neutrones tendrá el segundo isótopo.
9
IONES
El núcleo de un átomo es muy estable, siendo muy difícil alterar su estructura. Los
electrones tienen carga negativa y los protones carga positiva. Sabemos que dos cargas de distinto signo se atraen, ¿a qué se debe que estén separados los electrones de la
corteza y los protones del núcleo? Esto es debido a que la fuerza de atracción se equilibra
con la fuerza centrífuga X de los electrones.
Si le damos energía a un electrón este se puede escapar de su átomo y si hay otro
átomo cerca pueden quedar girando en él formando parte de su corteza. En ambos átomos hay un desajuste de cargas; ambos átomos han quedado cargados eléctricamente
denominándoseles iones:
- Al primero que ha perdido electrones se le llama ion positivo o catión.
- Al segundo que ha ganado electrones se le llama ion negativo o anión.
3.- LAS MOLÉCULAS: agrupación de átomos
Si pudieras dividir un grano de arena en trocitos cada vez más pequeños, llegarías a un
«trozo» mínimo que no podrías dividir más sin perder las propiedades de la sustancia arena. Esta parte de materia más pequeña que encontrarías se llama molécula. Si divides esta molécula obtendrías átomos de silicio y de oxígeno por separado, cuyas propiedades
son diferentes a las de la arena.
La molécula es la parte de materia más pequeña que sigue teniendo la misma naturaleza que la sustancia a la que pertenece.
Las moléculas pueden estar formadas por:
> Una sola clase de átomos. Por ejemplo, la molécula de cloro está formada por átomos
del mismo elemento.
> Más de una clase de átomos combinados entre sí. Por ejemplo, la molécula de amoníaco está formada por átomos de hidrógeno y de nitrógeno.
Algunas sustancias no forman moléculas de un número fijo de átomos, sino que tienen
sus átomos empaquetados en grandes estructuras ordenadas llamadas redes cristalinas.
Este es el caso de los metales, como el hierro, y de las sales, como el cloruro de potasio.
Existe un tipo reducido de sustancias, como los gases nobles (aparecen en el grupo 18
del Sistema Periódico de los elementos), en las que los átomos se encuentran libres, no
se asocian entre sí ni con otros átomos, y no forman ni moléculas ni redes cris- talinas.
Estas sustancias reciben el nombre de sustancias atómicas.Los átomos se organizan de
distintas formas, lo que origina que exista tal cantidad de sus- tancias diferentes.
3.1. Enlaces químicos: los átomos se unen entre sí
Si observas con detenimiento los dibujos de la página anterior, te darás cuenta de que algunas de las sustancias puras representadas contienen átomos de una sola clase (cloro,
hierro y helio): son sustancias puras simples; mientras que en otras existen átomos de
distintos elementos químicos (amoníaco y cloruro de potasio): son sustancias puras compuestas (como ya vimos en el tema anterior).
En la mayoría de estas sustancias, los átomos no se encuentran solos, sino que están enlazados entre sí, es decir, unidos con otros formando moléculas o redes cristalinas.
Un enlace químico es la unión de dos o más átomos para formar una molécula o
una red cristalina. Los átomos se enlazan de diferentes formas utilizando sus electrones.
Estos electrones pueden compartirse o transferirse.
13
Si al formarse un enlace, se produce una transferencia de electrones entre los átomos, estos dejan de ser neutros. Cuando un átomo pierde o gana algún electrón se convierte en
un átomo con carga al que se denomina ion.
(A) El enlace del cloruro de sodio (sal común) es un ejemplo de enlace iónico. Para formar
este compuesto se combinan sodio y cloro, perdiendo el primero un electrón que es capturado por el segundo. Los átomos de sodio y de cloro pasan a ser iones y entre ellos se forma un enlace iónico.
(B) Enlace covalente: en el compuesto amoníaco (NH3), el nitrógeno comparte sus electrones con tres átomos de hidrógeno.
ACTIVIDADES
5. Define los siguientes conceptos: molécula, red cristalina y sustancia atómica.
6. ¿Qué es un enlace químico? ¿Qué tipos de enlaces puede haber entre los átomos?
14
4.- LAS FÓRMULAS QUÍMICAS: un código de símbolos y números
Para representar de forma abreviada las sustancias
Sustancia
Fórmula
que están formadas por moléculas, los químicos utili-
Ácido Clorhídrico
HCl
Ácido Sulfúrico
H2SO4
Agua
H2O
Amoniaco
NH3
Butano
C4H10
Una fórmula consta de símbolos y subíndices. Para
Cloro
CL2
indicar la clase de átomos que forman una molécula
Cloruro de sodio
NACL
de una sustancia se utiliza el símbolo del elemento
Dióxido de carbono
CO2
correspondiente y para indicar el número de átomos
Dióxido de silicio
SIO2
presentes de ese elemento se le coloca un subíndice.
Glucosa
C6H12O6
Metano
CH4
Oxígeno
O2
Ozono
O3
zan un lenguaje universal: las fórmulas químicas.
Una fórmula química es la representación abreviada de la composición de una sustancia.
Cuando un símbolo aparece sin subíndice, significa
que hay un solo átomo de ese elemento.
Pero, ¿qué información nos ofrece esta fórmula?
La fórmula CH4 representa una molécula de la sustancia llamada metano. Está compuesta
por dos elementos químicos: el carbono y el hidrógeno. El número de átomos por molécula es de 1 átomo de carbono unido a 4 átomos de hidrógeno.
Cuando las sustancias no forman moléculas, sino redes cristalinas, la fórmula no indica
el número de átomos por molécula sino la proporción en la que se encuentran los átomos
de cada elemento.
15
4.1. Cada sustancia, una fórmula
Galería 1.4 Moléculas
Cualquier sustancia se puede representar mediante una fórmula química.
Moléculas y fórmulas químicas de dióxido de carbono, ácido sulfúrico y alcohol etílico. Red cristalina y fórmula del carbonato de calcio.
5.- LAS MOLÉCULAS DEL AIRE, DEL AGUA,
DE LA TIERRA Y DE LOS SERES VIVOS
Galería 1.3 Moléculas
ACTIVIDADES
7. ¿Qué es una fórmula química? ¿De qué
cons- ta? ¿Qué información nos ofrece?
8. ¿Qué compuestos representan las
siguientes fórmulas: H20, O2, N2, SiO2, C6H12O6,
NaCl?
16
Resume y ordena tus ideas
•
La materia está constituida por unas pequeñas partículas llamadas átomos. En un
átomo se diferencian dos zonas: el núcleo y la corteza. En el núcleo se encuentran los
protones, que tienen carga eléctrica positiva, y los neutrones, que no tienen carga. En la
corteza se encuentran los electrones, diminutas partículas con carga eléctrica negativa.
•
Cada elemento químico representa a todos los átomos de una misma clase que tie-
nen idéntico número atómico, es decir, el mismo número de protones en su núcleo.
•
El Sistema Periódico clasifica los elementos agrupándolos según la semejanza de
sus propiedades y en orden creciente de su número atómico.
•
La molécula es la parte de materia más pequeña que sigue teniendo la misma natura-
leza que la sustancia a la que pertenece. Puede estar formada por una sola clase de átomos o por más de una clase de átomos combinados entre sí. Algunas sustancias tienen
sus átomos empaquetados en grandes estructuras ordenadas llamadas redes cristalinas.
•
Un enlace químico es la unión de dos o más átomos para formar una molécula o red
cristalina. Los átomos se enlazan de diferentes formas utilizando sus electrones. Estos
electrones pueden transferirse, y se forma un enlace iónico, o compartirse y se origina un
enlace covalente.
•
Las fórmulas químicas representan una sustancia y expresan su composición. Para
indicar la clase de átomos que forman una molécula de una sustancia se utiliza el símbolo
del elemento correspondiente, y para indicar el número de átomos presentes de ese elemento se le coloca un subíndice.
•
El aire es una mezcla formada en un 99% de nitrógeno y oxígeno. La molécula del
agua está formada por dos átomos de hidrógeno y uno de oxígeno. Los elementos más
abundantes en la Tierra son, entre otros: hierro, oxígeno, magnesio, y silicio; y en los seres vivos: oxígeno, carbono, hidrógeno y nitrógeno.
16
Observa y experimenta
Modelos moleculares
¿Cómo puedes representar la estructura tridimensional de las moléculas?
Las moléculas, como todos los objetos materiales, tienen una forma y un tamaño, es decir, son tridimensionales. Los modelos moleculares nos permiten visualizar la forma tridimensional de las moléculas, acercándonos más a las estructuras reales de las mismas
que las representaciones escritas de las fórmulas o los dibujos.
Material necesario
> Plastilina de varios colores (blanca, negra, roja y azul claro).
> Palillos de forma redondeada.
¿SABIAS QUE…?
El angstrom (Å) es una unidad de longitud que se utiliza para expresar distancias atómicas y moleculares: 1 Å=0’0000000001m=10-10m
Procedimiento
1. El primer paso es reproducir los átomos que forman las moléculas que vas a construir.
Para ello, debes hacer bolitas de plastilina de distintos diámetros. Como los átomos que
constituyen la materia tienen diferentes tamaños, conviene reproducirlos a escala según
se indica en la siguiente tabla:
Elemento
Diámetro del átomo
Diámetro de la bolita
Color de la bolita
Carbono
1’54
4
Violeta
Hidrógeno
0’74
2
Blanco
Oxígeno
1’32
4
Rojo
Nitrógeno
1’40
4
Azul claro
17
2. Para construir los modelos de las moléculas, une
Galería 1.5 Modelos de moléculas
las bolitas, que representan los átomos, con los palillos redondeados, que representan los enlaces que
se establecen entre dichos átomos. Coloca los átomos tal y como los ves en la figura.
Conclusión
La utilización de plastilina y palillos te ha permitido
representar la estructura tridimensional de las moléculas.
PREGUNTA
Después de construir los modelos moleculares, responde al siguiente cuestionario:
a) ¿Cuáles de los modelos corresponden a sustancias simples? ¿Y a compuestos?
b) Escribe lo fórmula, el nombre y el número de los átomos presentes en la molécula de cada sustancia representada.
Aplica lo aprendido
Repasa tus conocimientos
1.- Relaciona cada partícula subatómica numerada en la primera serie con sus características enunciadas en la segunda:
A: 1) Protón. 2) Neutrón. 3) Electrón.
B: a) Tiene carga eléctrica negativa. b) No tiene carga. e) Apenas tiene masa. d) Se encuentra en continuo movimiento alrededor del núcleo. e) Se encuentra en el núcleo con los protones. f) Tiene carga eléctrica positiva.
18
2.- El titanio es un elemento químico que pertenece al grupo 4 del Sistema Periódico.
a) ¿Sabrías decir cuántos protones tiene en su núcleo?
b) ¿Y cuántos electrones en su corteza?
e) ¿Cuál es su símbolo químico?
c) ¿Es un elemento sólido, líquido o gaseoso?
d) ¿Se trata de un metal, un semimetal o de un no metal?
e) ¿Es natural o es un elemento preparado artificialmente?
f) Investiga la procedencia de su nombre.
3.- El número atómico de un elemento químico es el 79.
a) ¿De qué elemento se trata?
b) ¿A qué grupo del Sistema Periódico pertenece?
c) ¿Qué otros elemento químicos conforman este grupo?
d) Escribe el símbolo químico de todos estos elementos.
4.- El siguiente dibujo representa un enlace
químico:
a) ¿Sabrías decir de qué tipo se trata?
b) ¿Cómo se origina este enlace?
c) Pon un ejemplo de un compuesto químico en el que aparezca.
5.- ¿Qué representa cada parte señalada
en esta fórmula que corresponde al óxido de aluminio?
6.- Cuáles de las siguientes moléculas son las más abundantes en el aire, en la Tierra y en
los seres vivos: NaCl, O2, C6H12O6, N2, SiO2, ADN.
19
7.- A continuación se han representado varias sustancias mediante sus fórmulas químicas.
a) Indica a qué sustancia corresponde cada fórmula.
b) ¿Qué elementos componen cada una de ellas?
c) ¿Cuál es el número o proporción de átomos de
cada elemento por molécula?
8.- Estos dibujos representan a tres átomos diferentes.
a) ¿Cuál es el nombre de cada uno de ellos?
b) ¿Cuántos protones contiene cada uno en su núcleo?
c) ¿Cuántos electrones poseen en la corteza?
9.- Escribe los símbolos de los elementos químicos y explica por qué se representan con
esas letras.
a) Sodio.
b) Helio.
c) Einstenio.
d) Oro.
e) Paladio.
f) Francio.
20
Resuelve el problema
10.- Copia en la siguiente tabla que representa el Sistema Periódico de los elementos
que están en azul.
a) Completa las casillas sombreadas con los símbolos correspondientes.
b) ¿Cómo se llaman las filas horizontales?
c) ¿Cómo se denomina cada columna?
d) ¿Sabes qué grupos has completado?
e) Teniendo en cuenta solamente los grupos principales:
e.1) Escribe el nombre de los elementos con propiedades metálicas. ¿Dónde se sitúan?
e.2) Escribe el nombre de los elementos no metálicos. ¿Dónde se agrupan?
e.3) Escribe el nombre de los elementos semimetálicos. ¿Dónde se sitúan?
11.- La unidad de masa atómica (u) es tan pequeña que son necesarios seiscientos mil trillones de dichas unidades para conseguir una masa de un gramo: 1g=6.1023u
La masa de un neutrón equivale a 1u, ¿sabrías expresar en gramos la masa de dicho neutrón?
21
12.- ¿Cuántos átomos de hidrógeno, de azufre y de oxígeno hay
en mil moléculas de ácido sulfúrico (H2SO4)?
13.- ¿Cuál es la fórmula de una sustancia que forma redes cristalinas si hay tres átomos
de bromo por cada átomo de hierro?
14.- Haz un dibujo que represente la estructura de un
átomo.
a) Señala las diferentes partes del átomo.
b) Indica los nombres de las partículas subatómicas
representadas, teniendo en cuenta que su signo es el
de la carga eléctrica que poseen.
c) ¿Qué zona del átomo acumula la mayor parte de la
masa del mismo?
d) ¿De qué signo es la carga del
núcleo?¿Y la de la corteza?
e) Teniendo en cuenta las respuestas del apartado d), ¿por qué un átomo en conjunto es
neutro?
22
Es de tu competencia
La comunicación lingüística
La teoría atómica
Demócrito de Abdera, filósofo griego que vivió en el siglo IV a.c. fue el primero en proponer que si se dividía la materia en trozos cada vez menores, debía llegarse a una porción
que ya no podría dividirse más. A esa porción indivisible de la materia la llamó átomo, que
en griego significa «indivisible». Sin embargo, las ideas de Demócrito no fueron aceptadas. La influencia de otro gran pensador griego, Aristóteles, hizo que prevaleciera su teoría de los cuatro elementos, según la cual toda la materia estaba constituida por cantidades variables de tierra, agua, aire y fuego. El pre- dominio de uno u otro de estos elementos hacía que la materia fuera más o menos fría, seca, húmeda o caliente.
En el mundo cristiano, la teoría de Aristóteles fue adoptada por los alquimistas que desarrollaron su actividad durante toda la Edad Media. Los alquimistas, precursores de los
científicos, emprendieron la búsqueda de la piedra filosofal que les permitiría transformar
cualquier metal en oro. Aunque no la encontraron, nos legaron técnicas aprendidas de los
árabes y los egipcios, como la destilación en alambiques o el «baño María».
Tuvieron que pasar veinte siglos para que un químico inglés llamado John Dalton retomara
las ideas de Demócrito y publicase, en 1808, la primera teoría atómica moderna. En ella
se afirma que la materia no es continua, sino que está formada por partículas indivisibles,
llamadas átomos, entre los cuales no hay nada (está el vacío). Los átomos se pueden unir
para crear combinaciones de átomos que forman los compuestos químicos.
Amplía tu vocabulario
Busca en el diccionario o en alguna enciclopedia el significado de los siguientes términos
que aparecen en el texto:
> Destilación.
> Alquimista.
> Alambique.
23
Extrae las ideas principales
Resume el contenido de la lectura en un párrafo de no más de diez líneas.
Ayúdate de un pequeño esquema para anotar las ideas principales.
Comprueba tu comprensión lectora
> ¿Qué nombre le dio Demócrito a la porción indivisible
de materia?
> Según Aristóteles, ¿de qué estaba constituida toda la
materia?
> ¿Qué técnicas nos han legado los alquimistas de la
Edad Media?
> ¿Quién retornó las ideas de Demócrito y publicó en el
siglo XIX la primera teoría atómica moderna? ¿Qué afirma
en ella?
Expresa tu opinión
> ¿Por qué la teoría de Demócrito, aun siendo filosófica y sin base experimental, fue tan
importante en el desarrollo de la moderna teoría atómica?
Es de tu competencia
El tratamiento digital de la información
La energía nuclear
Cuando el núcleo de algunos elementos químicos, como
el uranio, se divide en dos, se libera una gran cantidad de
energía, llamada energía nuclear de fisión. Si esta energía
se desprende de golpe, provoca una terrible explosión.
Así es como funcionan las bombas nucleares. Pero cuando se desprende poco a poco, se emplea en las centrales
nucleares para producir electricidad.
24
Investiga
Con ayuda de internet y de las fuentes bibliográficas a tu alcance, debes recopilar información sobre el tema propuesto. Para ello te servirán las cuestiones:
> ¿Qué es la energía nuclear?
> ¿Qué sistemas utilizan las personas para obtener este tipo de energía?
> ¿Cómo funciona una central nuclear?
> ¿Cómo se transforma la energía nuclear en energía eléctrica?
> ¿Dónde están situadas las unidades nucleares en funcionamiento actualmente en nuestro país?
Utiliza la guía de búsqueda
Localiza la información en internet a través de los buscadores introduciendo los términos
adecuados. Prueba, por ejemplo, con los que te indicamos:
> Energía nuclear.
> Central nuclear.
> Energía eléctrica.
Organiza la información
Recoge la información en una ficha en la que aparezcan:
> La respuesta a las cuestiones investigadas.
> Los sitios web, libros, prensa, etc., consultados. No olvides anotar las fechas de actualización o publicación y los autores, si se conocen.
Elabora un trabajo
Basándote en la información anterior, realiza un trabajo, individual o en grupo, de acuerdo
con las indicaciones de tu profesor o profesora, utilizando un procesador de textos. Este
trabajo debe incluir:
> Un índice.
> Un párrafo de unas diez líneas presentando el tema.
> La respuesta a las cuestiones anteriores redactadas con brevedad.
> Tu valoración personal y las fuentes de información que has utilizado.
25
Prepara una puesta en común
¿Cómo se puede conseguir una fuente segura de energía?
Para proteger a los trabajadores, la población y el medio ambiente de los efectos perjudiciales de las radiaciones se establecen medidas de prevención y corrección frente a emergencias radiológicas. De esta forma, se consigue que las instalaciones nucleares sean manejadas por los profesionales de manera segura. Estas son algunas actuaciones:
> Recubrir de hormigón muy grueso el reactor donde se dividen los núcleos de uranio,
que se utilizan como combustible, para impedir el escape de radiación nuclear.
> Controlar la reacción en cadena para proveer una fuente de energía estable.
> Acondicionar los residuos generados para su posterior almacenamiento.
1. ¿Dónde está el impostor?
En cada grupo de palabras, una de ellas no tiene nada que ver con las demás.
Explica cuál es la causa por la que no se pueden incluir en el grupo.
2. ¡No caigas en la trampa!
¿Sabrías decir si lo que expresan las siguientes frases es verdadero o falso?
1) Un neutrón tiene la misma carga eléctrica que un electrón, pero signo contrario.
2) Las fórmulas químicas constan de símbolos y subíndices.
3) En las sustancias atómicas, los átomos se asocian entre sí o con otros átomos formando moléculas y redes cristalinas.
26
4) Los elementos que pertenecen al mismo grupo del Sistema Periódico tienen propiedades parecidas.
5) El oxígeno es el elemento más abundante en el Universo.
3. ¿Qué falta?
¿Qué representa este dibujo? ¿Crees que podrás encontrar los elementos que le faltan? Indica su nombre y sus características.
4. ¿Lo reconoces?
Este es el detalle ampliado de un dibujo. ¿Sabes de qué se trata?
¿Qué nombre recibe? ¿Cómo se forma?
27
Ciencia Viva: El Átomo
Los filósofos griegos discutieron mucho sobre la
naturaleza de la materia y concluyeron que el mundo
era más sencillo de lo que parecía.
En el siglo V a.C., Leucipo pensaba que sólo había un tipo de materia. Sostenía, además, que si dividíamos la materia en partes cada vez más pequeñas,
acabaríamos encontrando una porción que no se podría seguir dividiendo. Un discípulo suyo, Demócrito,
bautizó a estas partes indivisibles de materia con el
nombre de átomos, término que en griego significa “que no se puede dividir”.
Empédocles estableció que la materia estaba formada por 4 elementos: tierra, agua,
aire y fuego.
Aristóteles negó la existencia de los átomos de Demócrito y reconoció la teoría de los
4 elementos, que, gracias al prestigio que tenía, se mantuvo vigente en el pensamiento de
la humanidad durante 2000 años. Hoy sabemos que aquellos 4 elementos iniciales no forman parte de los 106 elementos químicos actuales.
TEORÍA ATÓMICA DE DALTON
En 1808, John Dalton publicó su teoría atómica, que retomaba las antiguas ideas de
Leucipo y Demócrito. Según la teoría de Dalton:
1) Los elementos están formados por partículas discretas, diminutas e indivisibles, llamadas átomos, que no se alteran en los cambios químicos.
28
2) Los átomos de un mismo elemento son todos iguales entre sí en masa, tamaño y
en el resto de las propiedades físicas o químicas. Por el contrario, los átomos de elementos diferentes tienen distinta masa y propiedades.
3) Los compuestos se forman por la unión de átomos de los correspondientes elementos según una relación numérica sencilla y constante. Por ejemplo, el agua está formada por 2 átomos del elemento hidrógeno y 1 átomo del elemento oxígeno.
Símbolos usados por Dalton para representar a los elementos
Al ser tan pequeña la masa de los electrones, el físico inglés J.
J. Thomson propuso, en 1904, que la mayor parte de la masa del
átomo correspondería a la carga positiva, que ocuparía la mayor
parte del volumen atómico. Thomson imaginó el átomo como
una especie de esfera positiva continua en la que se encuentran
incrustados los electrones, más o menos como las uvas pasas e n
un pudin.
En esta escena se puede observar cómo sería un átomo con este modelo:
Este modelo del “pudin de pasas” de Thomson era bastante razonable y fue aceptado durante varios años, ya que explicaba varios fenómenos, por ejemplo los rayos catódicos y los canales:
El Modelo de Rutherford establecía:
El átomo tiene un núcleo central en el que están concentradas la carga positiva y
prácticamente toda la masa.
29
La carga positiva de los protones es compensada con la carga negativa de los electrones, que se hallan fuera del núcleo. El núcleo contiene, por tanto, protones en un número
igual al de electrones del átomo.
Los electrones giran a gran velocidad alrededor del núcleo y están separados de éste
por una gran distancia.
Rutherford supuso que el átomo estaba formado por un espacio fundamentalmente
vacío, ocupado por electrones que giran alrededor de un núcleo central muy denso y pequeño.
EVALUACIÓN
1.- ¿Conoces el concepto de átomo?
2.- ¿Sabrías distinguir las distintas partículas elementales que forman un átomo?
3.- ¿Conoces el concepto de isótopo? Defínelo y realiza un dibujo de isótopos de un elemento, indicando las características de este en la tabla periódica.
4.- ¿Sabrías calcular todas las partículas elementales a partir del símbolo del átomo?
30
Actividades de ampliación
1.- Busca en la tabla periódica los elementos cuyos números atómicos son: 2, 7, 17, 47,
88.
2.- ¿Es posible dar las medidas de las masas atómicas en gramos? Razona tu respuesta.
¿Qué es una u.m.a.?
3.- ¿A qué partículas atómicas debe su masa el átomo?
4.- ¿Por qué se dice que la materia es eléctricamente neutra?
5.- Un átomo tiene 26 electrones en su corteza y 30 neutrones en su núcleo. a) ¿Cuántos
protones tiene y dónde están? b) ¿Cuál es su masa?
6.- Completa el siguiente cuadro:
Elemento
Símbolo
Calcio
Nº Protones
Nº Neutrones
20
K
Cobre
Nº Electrones
A
Z
40
5
23
15
30
7.- ¿Qué semejanzas y diferencias tienen dos isótopos de un mismo elemento?
8.- Invéntate los datos de dos átomos imaginarios A y B, que son isótopos de un mismo
elemento:
A
B
PROTONES
NEUTRONES
ELECTRONES
31
9.- ¿Qué es un ion? ¿Qué tipos de iones conoces? Defínelos. ¿Cuál será la carga iónica
de un ion de plomo que tiene 79 electrones? Z del Pb = 82
10.-Completa el siguiente cuadro
Element
o
Símbolo
Nº
Protones
Nº
Neutrone
s
Azufre
Cl
Nº
Electrones
A
16
32
18
Oro
79
Z
17
80
Pb
82
207
11.- Un átomo ha ganado tres electrones. ¿Cómo se llama por su carga eléctrica? ¿Cuál
es su carga? Si el átomo tiene 34 protones, ¿cuántos electrones le quedan?
12.- Indica el número de protones que hay en los núcleos de los siguientes átomos: Helio,
cobre, carbono, cinc.
13.- Dibuja dos átomos eléctricamente neutros y que sean isótopos
14.- Completa el siguiente cuadro:
Element
o
Símbolo
Nº
Protones
Ni
28
Flúor
Nº
Neutrone
s
Nº
Electrones
A
59
10
9
Wolframio
184
Br
Z
45
74
35
15.- Dibuja la casilla del calcio del sistema periódico indicando toda la información representada.
32
16. De un átomo de oro sabemos su número atómico (79) y su masa atómica (197). a) Hallar el nº de protones que contiene. b) Hallar el nº de electrones. c) Hallar el º de neutrones.
17.- Un átomo de yodo tiene 53 protones y 74 neutrones en su núcleo. ¿Cuál es su número atómico? ¿Y su masa?
18.- Un átomo tiene 47 electrones y 61 neutrones. ¿Cuál es su masa? ¿De qué elemento
se trata?
19.- Un átomo tiene 26 electrones en su corteza y 30 neutrones en su núcleo. a) ¿Cuántos
protones tiene y dónde están? b) ¿Cuál es su masa?
PROBLEMA NIVEL ALTO: VIAJE AL INTERIOR DE LA MATERIA
1º) Pedro ha soñado que ha realizado un viaje en su nave especial de los sueños,
viendo cómo se unía un átomo de cloro y otro de sodio. Del átomo de sodio salió despedido en electrón que casi choca con su nave, este electrón se lanzó sobre el átomo de cloro. Ambos átomos se precipitaron uno sobre el otro, atraídos por una fuerza especial, y
quedaron unidos como un todo. Al despertarse Pedro le surgieron muchas dudas:
a)
¿Cuántos electrones tenía el átomo de cloro al principio? y ¿cuántos el de sodio?
b)
¿Con cuántos se quedó cada uno y que nombre reciben esos átomos cargados?
c)
¿A qué se debe la unión de ambos átomos?
d)
¿Cómo se llama esa unión?
e)
Si hubiese más átomos de estos elementos ¿podría repetirse este fenómeno?
f)
Los dos átomos tenían distinto tamaño pero ¿a qué se debe su diferencia?
¡Se podría haber quedado la nave sin combustible y tener otro sueño que no se le hu-
biese complicado tanto! Pero vamos a ayudarlo.
33