Download Variables estadisticas unidimensionales: la

Document related concepts
no text concepts found
Transcript
Capítulo 11
Variables estadísticas
unidimensionales: la Binomial y la
Normal
La Estadística es la rama de las Matemáticas que se ocupa del estudio de los procedimientos
y los métodos para trabajar con datos, con el …n de obtener información relacionada con ellos.
Podemos distinguir entre dos grandes bloques dentro de la Estadística.
z La Estadística Descriptiva, que se encarga de la recogida de datos, su representación y
elaboración de tablas para su posterior estudio.
z La Estadística Inferencial, que se ocupa del diseño de métodos o modelos con el objetivo
de obtener información acerca de ciertos parámetros que nos interesan.
Ambas partes trabajan con algunos conceptos generales que repasamos a continuación.
I Población (o universo): es el conjunto formado por todos los elementos que son objeto del
estudio estadístico.
I Individuo: es cada uno de los elementos de la población.
I Muestra: es cualquier subconjunto de la población.
I Tamaño: es el número de individuos de la muestra.
Volveremos a repasar estos conceptos en el capítulo §12.
31
32
CAPÍTULO 11. VARIABLES UNIDIMENSIONALES
11.1.
Variables estadísticas
Llamaremos variable estadística (o carácter) a cualquier cualidad que tienen todos los
individuos de la población a estudiar. A los distintos valores que puede tomar una variable los
llamaremos modalidades. Las variables estadísticas se clasi…can en cualitativas (sus modalidades no son numéricas; por ejemplo, el color de ojos toma los valores marrón, azul, verde,
negro, etc.) y cuantitativas (sus modalidades son numéricas; por ejemplo, el peso o la estatura
de las personas). En este estudio sólo trabajaremos este último tipo de variables.
Las variables estadísticas cuantitativas (a las que, a partir de ahora, llamaremos simplemente
variables ya que son las únicas que nos interesan) se dividen a su vez en:
Discretas, si sólo pueden tomar un número …nito de modalidades distintas (a veces se admite
que sea in…nito numerable). Por ejemplo, el número de hermanos.
Continuas, si pueden tomar, al menos teóricamente, todos los valores comprendidos en un
intervalo. Por ejemplo, el peso o la estatura de una persona.
En lo que sigue, y dado que el presente curso sólo pretende hacer una introducción somera
a la Estadística, desarrollaremos la teoría principalmente para variables discretas. No obstante,
utilizando marcas de clase de intervalos, todo se puede generalizar a variables continuas.
11.1.1.
Tabla de frecuencias
En lo que sigue, sea X una variable estadística (cuantitativa) discreta que toma un número
…nito de valores distintos. Representaremos por fx1 ; x2 ; : : : ; xk g a las distintas modalidades que
puede tomar X; si fuese continua, las agruparíamos en intervalos
f [x1 ; x2 [ ; [x2 ; x3 [ ; : : : ; [xk
2 ; xk 1 [ ;
[xk
1 ; xk ]
g;
y trabajaríamos con la marca de clase (el punto medio de cada intervalo) como lo haremos
a continuación con cada modalidad xi . Supongamos que cada modalidad xi se repite en la
población (o en la muestra) un número ni de veces, al que llamaremos frecuencia absoluta de
la modalidad xi . Llamemos N = n1 + n2 + : : : + nk al tamaño total de la población estudiada.
Representaremos por fi a la frecuencia relativa de la modalidad xi , que se de…ne como fi =
A. Roldán
33
11.2. Parámetros asociados a una distribución de frecuencias
ni =N . Usualmente, estas frecuencias se agrupan en una tabla de frecuencias como la siguiente:
xi
ni
Ni
fi
Fi
x2i ni
xi ni
x1
x2
..
.
(11.1)
xk
N
N
(1)
1
1
xi ni
(2)
x2i ni
(3)
Las columnas Ni y Fi se denominan frecuencias absolutas (o relativas) acumuladas y se
de…nen, en el caso de las primeras, como Ni = n1 + n2 + : : : + ni , para cada i entre 1 y k. Como
veremos, son útiles a la hora de determinar la mediana o los distintos cuartiles y percentiles de
la distribución.
11.1.2.
Representación grá…ca de una distribución
Existen diversas formas para representar una distribución cuantitativa: diagrama de puntos,
diagrama de barras, histograma, polígono de frecuencias. También para representar un cualitativa: diagrama de sectores, pictograma.
### Poner ejemplos.
11.2.
Parámetros asociados a una distribución de frecuencias
Los parámetros asociados a una distribución son números que indican alguna propiedad de la
misma. Podemos dividirlos en medidas de centralización (que indican valores representativos
de la distribución en algún sentido) y de dispersión (que indican cómo de unidos o separados
está dichos valores).
11.2.1.
Medidas de centralización
Son números que tratan de representar, en algún sentido, a toda la distribución, o tratan
de aportar alguna información sobre la misma. Indudablemente, la más importante es la media
aritmética.
A. Roldán
34
CAPÍTULO 11. VARIABLES UNIDIMENSIONALES
Media (aritmética)
Llamaremos media aritmética (o simplemente, media) de la variable X, y la representaremos por X o por X (o simplemente por ), al número:
X=
X
=
k
X
xi fi = x1 f1 + x2 f2 + : : : + xk fk :
(11.2)
i=1
Como se puede observar, el símbolo signi…ca sumatoria, e indica la suma de todos los términos
que hay dentro cuando se varía el índice a que hace referencia (en este caso, i). Teniendo en
cuenta que fi = ni =N , la forma más usual de determinar la media es
k
X=
1X
xi ni ;
N
(11.3)
i=1
que se consigue dividiendo la casilla (2) entre la casilla (1) en la tabla de frecuencias (11.1). La
media aritmética es un parámetro que nos da una idea de en torno a qué valor se encuentran
concentrados los valores de la variable estadística (aunque en ocasiones no resulte un valor
demasiado representativo). Entre las propiedades más interesantes de la media destacamos las
siguientes:
Cambio de origen: si le sumamos (o restamos) una constante C a todos los valores de la
variable X, yi = xi + C, la media de la nueva variable Y = X + C es la media de la variable
anterior más la constante C.
Y = X + C:
Cambio de escala: Si multiplicamos todos los valores de la variable X por una constante C,
yi = C xi , la media de la nueva variable Y = CX es la media de la anterior multiplicada
por C.
Y =C X
La media de las desviaciones de los valores de la variable con respecto a la media aritmética
es cero.
k
X
xi X ni = 0:
i=1
Moda
La moda de la variable X es el valor (o valores) que posee mayor frecuencia absoluta, es
decir, la modalidad que más se repite en la distribución. Se representa por M o. Puede haber
varias modas en una misma distribución, por lo que se puede hablar de distribuciones bimodales,
trimodales, etc.
A. Roldán
11.2. Parámetros asociados a una distribución de frecuencias
35
Mediana
La mediana de la variable X es el valor numérico que deja igual número de observaciones
inferiores a él que superiores. Se representa por M e.
Percentil
Se llama percentil de orden m, y lo denotaremos por Pm , al valor numérico que deja a su
izquierda un m % de valores de la distribución. Así, se habla también de cuartiles (si se divide
la distribución en cuatro partes equifrecuentes) y deciles (en diez partes).
11.2.2.
Medidas de dispersión
Las medidas de dispersión tratan de indicar la forma con la que se distribuyen las modalidades
sobre la recta real. Sin duda, la más importante es la varianza (y su raíz cuadrada). Aunque
comenzamos explicando un coe…ciente que da una idea clara de cómo tener una concepción
rápida de la dispersión de la variable.
Recorrido
El recorrido de una distribución se de…ne como la diferencia entre los valores mayor y menor
de la variable.
rec X = xmax
xm n :
Este parámetro no da una idea de un valor central, sino de cómo se dispersan los valores de la
variable.
Varianza
2 o por s2 (o simplemente
Llamaremos varianza de la variable X, y la denotaremos por X
X
2
2
por
o por s si no hace falta indicar la variable), a la media aritmética de los cuadrados de
las desviaciones de los valores de la variable con respecto a la media aritmética del colectivo, es
decir,
k h
i
X
2
2
2
=
s
=
x
X
f
(11.4)
i
i :
X
X
i=1
A. Roldán
36
CAPÍTULO 11. VARIABLES UNIDIMENSIONALES
Desarrollando esta fórmula, la forma más sencilla de calcularla es la siguiente:
k
2
X2 =
= X2
1X 2
xi ni
N
X 2;
(11.5)
i=1
lo cual se consigue dividiendo la casilla (3) entre la casilla (1) en la tabla de frecuencias (11.1) y
restándole el cuadrado de la media. La varianza indica la forma en la que se distribuyen los datos
alrededor de la media aritmética, de tal forma que cuanto mayor sea, más dispersos están los
datos, y cuanto más próxima está a cero, más agrupados están. Sus principales características
son las siguientes.
2
La varianza nunca es negativa:
tribución es constante.
0. Además, la varianza es nula si, y sólo si, la dis-
2
A la varianza no le afectan los cambios de origen, ya que si Y = X + C, entonces Y2 = X
(esto es debido a que no sólo se trasladan los datos, también lo hace la media aritmética).
Si Y = CX, entonces
2
Y
= C2
2
X,
donde C es una constante.
Desviación típica
Llamaremos desviación típica de la variable X, y la denotaremos por X o por sX (o
simplemente por o por s si no hace falta indicar la variable), a la raíz cuadrada (no negativa)
de la varianza.
q
2
=
X
X:
Para calcularla, se debe determinar primeramente la varianza con la fórmula (11.5). La desviación
típica tiene las mismas propiedades que la varianza.
La desviación típica nunca es negativa:
0.
A la desviación típica no le afectan los cambios de origen, ya que si Y = X + C, entonces
Y = X.
Si Y = CX, entonces
Y
=C
X,
donde C es una constante.
Pero hay una cuarta propiedad que merece la pena resaltar.
Lema 11.2.1 La desviación típica
I En el intervalo X
A. Roldán
;X +
veri…ca:
se encuentra, al menos, el 68 % de la población.
37
11.2. Parámetros asociados a una distribución de frecuencias
I En el intervalo X
2 ;X + 2
se encuentra, al menos, el 95 % de la población.
I En el intervalo X
3 ;X + 3
se encuentra, al menos, el 99 % de la población.
Cuasivarianza y cuasidesviación típica
En muchas ocasiones, la varianza interviene en cálculos complicados que pueden ser simpli…cados con un parámetro casi idéntico. Llamaremos cuasivarianza de la variable X, y la
2 o por s
denotaremos por ^X
^2X (o simplemente por ^ 2 o por s^2 si no hace falta indicar la variable), a la varianza de la variable corregida con el factor N=(N 1), donde N es el tamaño de
la población.
k h
i
X
N
1
2
2
ni =
xi X
^2 :
(11.6)
^X =
N 1 X
N 1
i=1
La corrección con este factor resuelve cálculos muy complicados. Además, como ya indicaremos,
la cuasivarianza muestral es un estimador insesgado de la varianza poblacional, lo que lo convierte en el mejor estimador posible. De la misma forma, llamaremos cuasidesviación típica
de la variable X a la raíz cuadrada de su cuasivarianza.
q
2 :
(11.7)
^X = ^X
Coe…ciente de variación
La desviación típica permite comparar la dispersión de distribuciones cuyas medias aritméticas estén próximas y vengan expresadas en las mismas unidades. Ahora bien, si las medias de
las distribuciones son muy dispares, la comparación a través de la desviación típica no es nada
representativa. Se utiliza entonces el coe…ciente de variación de la variable X, que se de…ne
como el cociente entre su desviación típica y su media aritmética (si ésta no es nula).
CX =
X
X
:
Desviación media
La varianza de X da una idea de cómo de próximos están los valores de la distribución de
su media aritmética. Pero tiene la desventaja de que lo hace elevando al cuadrado, de tal forma
que las unidades pueden sufrir modi…caciones. Una forma de arreglar este problema es tomar las
diferencias respecto de la media aritmética en valor absoluto, lo que da lugar a la desviación
media de la variable X, que se de…ne como
Dm =
k
X
i=1
k
xi
X
fi =
1X
N
xi
X
ni :
(11.8)
i=1
A. Roldán
38
CAPÍTULO 11. VARIABLES UNIDIMENSIONALES
El problema que tiene este parámetro es que es mucho más laborioso de calcular, pues es inevitable calcular todas las desviaciones respecto de la media aritmética.
Ejercicio 19 En el instituto Acci hay 800 alumnos y alumnas, de los cuales 85 llevan un
piercing, 23 llevan dos y 7 llevan tres. Realiza un estudio completo de la variable estadística que
mide el número de piercing en el Acci.
Solución :
Sea X la variable estadística que mide el número de piercing que lleva cada alumno
o alumna. Una tabla de frecuencias sencilla es la siguiente:
xi
0
1
2
3
ni
685
85
23
7
Ni
fi
Fi
685
770
793
800
00 856
00 856
00 106
00 962
00 029
00 009
00 991
1
800
xi ni
1
x2i ni
xi
X
0
85
46
21
0
85
92
63
1300 15
152
240
2600 3
ni
680 85
410 63
190 67
La media y la varianza son los dos coe…cientes que debemos aprender a calcular más rápidamente,
porque son los más importantes.
8
152
0
>
>
< X = 800 = 0 19;
>
>
: 2 = 240 00 192 = 00 2639:
X
800
Entonces la desviación típica es
00 514. Está claro que la moda es 0 piercing, al igual que la
mediana. El recorrido es de 3 0 = 3 piercing y la cuasivarianza se calcula también fácilmente:
2
^X
=
N
N
1
2
^X
=
800 0
0 2639
799
00 264:
El coe…ciente de variación es CX = X =X 20 705. La desviación media es la más laboriosa de
calcular, por lo que cuesta en la tabla de frecuencias.
Dm =
2600 3
800
00 325:
Esto acaba el estudio.
11.3.
Tipi…cación de una variable
Sea X una variable estadística (cuantitativa). Denotemos por X y por X a su media aritmética y a su desviación típica. Como hemos visto al explicar los parámetros anteriores, si llamamos
A. Roldán
39
11.4. Variables aleatorias
Y = X X, tendremos una nueva variable cuya media es cero y de igual desviación típica que
X, es decir,
Y = X X = 0;
Y = X:
Hemos ganado que ahora su media está centrada en el cero, pero queremos hacer un proceso
para tener controlada también su desviación típica. Para ello, recurrimos a un cambio de escala
dividiendo entre X (si este valor no es nulo, es decir, si la variable no es constante). De…nimos
así
X X
Y
=
:
Z=
X
X
Esta nueva variable tiene media cero y desviación típica uno, ya que
Z=
1
Y
=
X
1
Y =
X
0
X
= 0;
Z
=
1
Y
X
=
X
= 1:
X
Este proceso se denomina tipi…cación de la variable X, y nos permite construir otra variable
de media cero y desviación típica uno, íntimamente relacionada con la anterior.
8
8
<
<
media X;
media 0;
X X
X!
)
Z=
!
: desv. típica
: desv. típica 1:
X
;
X
Este proceso sirve para comparar datos de distribuciones distintas. Otra ventaja de la tipi…cación
es que la variable Z sigue conservando el mismo tipo de distribución que X, es decir, si X sigue
una distribución normal, entonces Z también posee el mismo tipo de distribución.
11.4.
Variables aleatorias
Hay ocasiones en que nos interesa estudiar probabilidades asociadas a funciones que relacionan sucesos aleatorios y números (por ejemplo, la probabilidad de que un alumno, elegido
al azar, tenga tres hermanos). Necesitamos así introducir el concepto de función de…nida sobre
algunos tipos de sucesos.
De…nición 11.4.1 Sea E el espacio muestral asociado a algún experimento aleatorio. Llamaremos variable aleatoria a cualquier ley X : E ! R que asocie un número real a cada suceso
elemental. Llamaremos recorrido de la variable aleatoria X, y lo denotaremos por rec X o
por X (E), al conjunto de valores reales que forman sus imágenes.
Esta de…nición es parecida a la de función de probabilidad p : S ! R, pero tiene dos diferencias importantes: en primer lugar, la función de probabilidad se puede aplicar a cualquier
suceso del espacio de sucesos, mientras que la variable aleatoria sólo se puede aplicar a sucesos
elementales. En este sentido, es más restrictiva. Sin embargo, la función de probabilidad está
acotada entre cero y uno, mientras que la variable aleatoria puede tomar cualquier valor real.
A. Roldán
40
CAPÍTULO 11. VARIABLES UNIDIMENSIONALES
Ejemplo 11.4.2 Sea E = f1; 2; 3; 4; 5; 6g el espacio muestral asociado al lanzamiento de un
dado. Entonces podemos de…nir la variable aleatoria que a cada resultado le asocia su triple, es
decir, X (fxg) = 3x. Entonces la variable X puede tomar valores entre 3 y 18. Obsérvese que
no tiene sentido aplicar la variable X al suceso f2; 5g.
Ejemplo 11.4.3 Sea E el conjunto de alumnos y alumnas del instituto Acci. Podemos de…nir
una variable X que a cada alumno/a le asocia su número de hermanos y hermanas (sin contarse
a sí mismo/a). Entonces X toma valores naturales entre cero y, quizá, como mucho, diez (¿habrá
algún caso?). No tiene sentido aplicarle X a dos alumnos a la vez, porque no sabríamos qué
número asociarles.
11.4.1.
Función de distribución de una variable aleatoria
Una de las primeras necesidades que nos planteamos es la de traducir probabilidades sobre
un espacio de sucesos a conjuntos de números reales. Por ejemplo, nos interesa la probabilidad
de que, al lanzar cuatro monedas aparezcan exactamente dos cruces, o menos de dos cruces, o
al menos dos cruces, o no aparezcan dos cruces. Esta necesidad de hacer intervenir los números
reales relacionándolos con probabilidades justi…ca las siguientes de…niciones.
De…nición 11.4.4 Sea (E; S; p) un espacio de probabilidad y sea X : E ! R una variable
aleatoria. Dado cualquier subconjunto de números reales A
R, llamaremos probabilidad
de que X pertenezca al conjunto A, y la denotaremos por p (A) o por p (X 2 A), a la
probabilidad del suceso aleatorio formado por todos los sucesos elementales de E cuyas imágenes
por X pertenecen al conjunto A, es decir,
p (A) = p (X 2 A) = p (f ! 2 E / X (!) 2 Ag) :
Llamaremos función de distribución asociada a la variable aleatoria X, y la denotaremos por FX (o, abreviadamente, por F ), a la función FX : R ! R (real de variable real) que
a cada número x 2 R le asocia la probabilidad de que la variable X tome valores en el intervalo
cerrado no acotado ( 1; x].
FX (x) = p (X
x) = p (X 2 ( 1; x]) = p (f ! 2 E / X (!)
xg) :
(11.9)
La función de distribución caracteriza completamente a la variable aleatoria, de tal forma
que es equivalente conocer su acción a conocer su función de distribución.
Ejemplo 11.4.5 Consideremos el espacio de probabilidad asociado al lanzamiento de un dado
(no trucado), donde cada cara tiene probabilidad 1=6 de salir, y la variable aleatoria X (fxg) = 3x
A. Roldán
41
11.5. Variable aleatoria discreta: la distribución binomial
de…nida en el ejemplo 11.4.2. Calculemos algunos valores de su función de distribución:
F (5) = p (X
1
5) = p (X 2 f3g) = p (f3g) = :
6
F (6) = p (X
6) = p (X 2 f3; 6g) = p (f3; 6g) =
F (15) = p (X
F (30) = p (X
F ( 2) = p (X
11.4.2.
2
1
= :
6
3
5
15) = p (X 2 f3; 6; 9; 12; 15g) = p (f3; 6; 9; 12; 15g) = :
6
30) = p (X 2 f3; 6; 9; 12; 15; 18g) = p (E) = 1:
2) = p (X 2 ?) = p (?) = 0:
Clasi…cación de variables aleatorias
Al igual que las variables estadísticas, las variables aleatorias de clasi…can en discretas o
continuas según si el número de valores que pueden tomar es …nito (o incluso in…nito numerable)
o bien pueden tomar, al menos teóricamente, todos los valores de un intervalo real. En el primer
caso está la variable que mide el número de hermanos de una persona, el número de tornillos
defectuosos que fabrica una máquina en un día, el número del calzado que utiliza, etc. En el
segundo grupo tenemos la variable aleatoria que mide el peso o la estatura de una persona, el
tiempo que tarda en llegar al trabajo, la energía que gasta una máquina para calentar un litro
de leche, etc.
El ejemplo más conocido de variable aleatoria discreta es el caso de la variable binomial, y el
de variable continua es el de variable normal. Dedicamos el resto del capítulo a familiarizarnos
con estas distribuciones de probabilidad, que serán de gran importancia en lo que resta del
temario.
11.5.
Variable aleatoria discreta: la distribución binomial
Sea (E; S; p) un espacio de probabilidad y sea X : E ! R una variable aleatoria discreta.
Denotemos por rec X = fx1 ; x2 ; : : : ; xk g R a su recorrido. Llamaremos función de densidad
(o distribución de probabilidad) de X a la función real de variable real que a cada número
le asocia la probabilidad de que la variable X tome dicho valor.
fX : R ! R;
fX (x) = p (X = x) :
Como suponemos que X sólo toma un número …nito de valores distintos, su función de densidad
es siempre nula salvo en los propios valores que puede tomar, en los que vale:
pi = fX (xi ) = p (X = xi ) ;
8i 2 f1; 2; : : : ; kg :
A. Roldán
42
CAPÍTULO 11. VARIABLES UNIDIMENSIONALES
Evidentemente,
p1 + p2 + : : : + pk = p (X 2 fx1 ; x2 ; : : : ; xk g) = p (X 2 E) = p (E) = 1:
Llamaremos media (o esperanza matemática) de la variable X, y la denotaremos por X (o
por X o por E (X)), al número real
X=
k
X
xi pi = x1 p1 + x2 p2 + : : : + xk pk :
(11.10)
i=1
Se trata de la misma de…nición que en (11.2) cambiando las frecuencias relativas por probabilidades. De la misma forma, llamaremos varianza de la variable X al valor
2
X
= s2X =
k h
X
xi
X
2
i=1
i
pi ;
(11.11)
que, más fácilmente, se calcula como:
2
=
2
X2
X =
k
X
x2i pi
X 2:
(11.12)
i=1
La desviación típica de la variable aleatoria X es la raíz cuadrada no negativa de la varianza:
=
p
2:
(11.13)
De forma análoga podemos de…nir la cuasivarianza y los demás parámetros estadísticos.
11.5.1.
La distribución binomial
Consideremos un experimento aleatorio en el que sólo pueden ocurrir dos posibilidades: o
bien ocurre un suceso A con probabilidad p o bien ocurre su complementario, A, con probabilidad
q = 1 p. En lo sucesivo, llamaremos al suceso A éxito y a su complementario A, fracaso.
Supongamos que podemos repetir el experimento n veces de manera independiente, es decir,
de tal forma que un resultado no in‡uya para nada en el siguiente, o dicho de otra manera, la
probabilidad de éxito p debe mantenerse constante a lo largo de todas las repeticiones.
Llamemos X a la variable aleatoria que mide el número de éxitos que se obtienen al realizar
n veces el experimento (de forma independiente). Diremos entonces que la variable X presenta
una distribución binomial de parámetros n (el número de repeticiones independientes) y p
(la probabilidad de éxito, constante a lo largo de las repeticiones), y lo denotaremos por
X ,! B (n; p) :
A. Roldán
43
11.5. Variable aleatoria discreta: la distribución binomial
Es claro que X toma valores naturales entre 0 y n, pues no se pueden obtener menos de cero
éxitos ni más de n éxitos. Por tanto,
rec X = f0; 1; 2; : : : ; ng :
Aunque no vamos a demostrarlo, la probabilidad de que X tome cualquiera de estos valores es
exactamente
pk = p (X = k) =
n
k
pk q n
k;
8k 2 f0; 1; 2; : : : ; ng
n
k
(y vale cero en todos los demás números reales), donde
elementos tomadas de k en k, es decir,
n
k
=
(11.14)
representa las combinaciones de n
n!
:
k! (n k)!
Lema 11.5.1 Si X ,! B (n; p), entonces su media y su desviación típica son:
X=n p
y
X
=
p
n p q
Ejercicio 20 Ana ha estudiado 12 de los 20 temas que componen el temario de una asignatura.
Si realiza 5 exámenes sobre el temario, calcula la probabilidad de:
(a) aprobar exactamente dos exámenes;
(b) aprobar más de dos exámenes;
(c) no aprobar ningún examen;
(d) aprobar algún examen.
Solución :
Llamemos A al suceso “seleccionado un tema al azar, Ana lo sabe”. Es claro que A es
el suceso éxito, pues en este caso Ana aprueba el examen. La probabilidad de que Ana se sepa
el tema del examen es
3
12
= = 00 6;
p = p (A) =
20
5
por lo que la probabilidad de fracaso es q = 1 p = 2=5. Si repetimos cinco veces el examen
de manera independiente, podemos llamar X al número de exámenes aprobados por Ana, es
decir, al número de éxitos que se presentan en cinco repeticiones. Claramente, por de…nición,
X ,! B (5; 00 6). Entonces la probabilidad de aprobar exactamente dos exámenes es:
p (X = 2) =
5
2
00 62 00 43 = 00 230 4
23 %:
A. Roldán
44
CAPÍTULO 11. VARIABLES UNIDIMENSIONALES
La probabilidad de que apruebe más de dos exámenes es
p (X > 2) = p (X
=
5
3
3) = p (X = 3) + p (X = 4) + p (X = 5) =
00 63 00 42 +
5
4
00 64 00 41 +
5
5
= 00 345 6 + 00 259 2 + 00 077 76 = 00 682 5
00 65 00 40 =
68 %:
La probabilidad de que no apruebe ningún examen es:
p (X = 0) =
5
0
00 60 00 45 = 00 010 24
1 %:
Finalmente, la probabilidad de que apruebe algún examen, que podríamos calcularla como:
p (X
1) = p (X = 1) + p (X = 2) + p (X = 3) + p (X = 4) + p (X = 5) ;
preferimos calcularla mediante el paso al complementario, es decir,
p (X
1) = 1
p (X < 1) = 1
p (X = 0) = 1
00 01024 = 00 98976
99 %:
Ejercicio 21 Calcula la media y la desviación típica de una variable X ,! B (3; 00 7) haciendo
todos los cálculos necesarios.
Como X ,! B (3; 00 7), esta variable sólo puede tomar cuatro valores, f0; 1; 2; 3g.
Calculamos cada probabilidad.
Solución :
p0 = p (X = 0) =
3
0
00 70 00 33 = 00 027;
p1 = p (X = 1) =
3
1
00 71 00 32 = 00 189;
p2 = p (X = 2) =
3
2
00 72 00 31 = 00 441;
p3 = p (X = 3) =
3
3
00 73 00 30 = 00 343:
Agrupamos estas probabilidades en una tabla de frecuencias, y calculamos la media y la desviación
típica de X:
xi
pi
xi pi
x2i ni
0
1
2
3
00 027
00 189
00 441
00 343
0
0
0 189
00 882
10 027
0
0
0 189
10 764
30 087
1
20 1
50 04
8
20 1
>
>
< X=
= 20 1;
1
>
p
p
>
:
50 04 20 12 = 00 63 :
X =
Obsérvese cómo se cumple que X = n p = 3 00 7 = 20 1 y que
p
00 63 .
A. Roldán
X
=
p
n p q =
p
3 00 7 00 3 =
45
11.5. Variable aleatoria discreta: la distribución binomial
Esquema de las fuentes
Hemos podido calcular en el ejercicio 21 todas las probabilidades asociadas a la variable
porque n es un número relativamente pequeño. En este caso, quizá convenga aplicar la fórmula
(11.14). Pero hay un proceso en cascada que quizá sea también factible. Supongamos que X ,!
B (n; 00 6) y vamos a calcular las distintas probabilidades según sea n. Si n = 0, entendemos que
p (X = 0) = 1. Si n = 1, la probabilidad de obtener un éxito es 00 6, y la de un fracaso, 00 4. Es
como si el 100 % del agua de una fuente que está desequilibrada cayese por los dos lados: en
uno se recoge el 60 % y en otro, el 40 %, como en el siguiente esquema.
1
n=0
60 %
40 %
.
&
00 6
Éxito
00 4
Fracaso
n=1
Pero la fuente puede continuar hacia abajo, teniendo en cuenta que por la izquierda cae el 60 %
del agua (y se añade un éxito) y por la derecha el 40 % (y se añade un fracaso).
1
00 6
00 36
.
1E
n=0
.
&
2E
&
00 48
.
00 4
1F
n=1
&
1E1F
00 16
2F
n=2
Debajo de cada número se indica el número de éxitos y fracasos; por ejemplo, 1E1F signi…ca un
éxito y un fracaso. Obsérvese también cómo a la fuente central le cae agua (probabilidad) de las
dos posiciones superiores, por lo que acumula: 00 6 00 4 + 00 4 00 6 = 00 48. Y la tabla seguiría:
1
00 6
00 36
00 216
00 1296
4E
.
3E
.
&
2E
00 3456
3E1F
.
&
.
&
1E
00 432
2E1F
00 3456
3E2F
.
&
.
&
.
n=0
&
00 48
1E1F
00 3456
2E2F
.
&
.
&
00 4
1F
00 288
1E2F
00 2304
n=1
&
.
&
.
00 16
2F
00 1536
n=2
&
.
1E3F
2E3F
A. Roldán
00 064
3F
n=3
&
00 025
4F
46
CAPÍTULO 11. VARIABLES UNIDIMENSIONALES
En la tabla anterior se observa que si X ,! B (3; 00 6), entonces p (X = 2) = 00 432, porque se
conseguirían dos éxitos.
11.6.
Variable aleatoria continua: la distribución normal
Una variable aleatoria (cuantitativa) se dice continua si puede tomar, al menos de forma
teórica, todos los valores de un intervalo. Como en éste hay una cantidad de números in…nita
no numerable, no es posible que la probabilidad de que la variable tome los valores del intervalo
sea positiva, pues entonces una suma no numerable de números estrictamente positivos nunca
está acotada superiormente. Por eso, la probabilidad de que una variable continua tome un valor
concreto es cero. Realmente, no debería ser cero, porque podría ocurrir que la estatura de un
determinado alumno fuese de 1’65 m, pero como no tenemos un instrumento de medida lo
su…cientemente sutil como para a…rmarlo de forma tajante (podremos sacar 20 decimales a su
altura, pero no 300), preferimos hablar de la probabilidad de que la altura del alumno esté en
el intervalo ]10 6499; 10 6501[.
Esto modi…ca sustancialmente la forma que tenemos de calcular probabilidades con una
variable continua, pues debemos hacer una de…nición con integrales (quizá no sea el objetivo de
este curso saber calcular las siguientes integrales; si es así, pásate a la sección §11.6.1).
De…nición 11.6.1 Sea (E; S; p) un espacio de probabilidad y sea X : E ! R una variable
aleatoria. Diremos que X es una variable continua si existe una función integrable fX : R ! R,
llamada función de densidad de X, de manera que la probabilidad de que la variable aleatoria
X tome valores en un intervalo I es la integral (de…nida o no) de fX en I, es decir,
Z
p (X 2 I) = fX (x) dx; 8I R; I intervalo:
(11.15)
I
En el caso de que I = ]a; b[, se denota
p (a < X < b) =
Z
b
fX (x) dx:
a
De acuerdo con esta de…nición, la probabilidad de que la variable tome un valor puntual es nula,
ya que
Z
a
p (X = a) = p (X 2 [a; a]) =
fX (x) dx = 0:
a
Por ello, es lo mismo considerar intervalos abiertos que cerrados (o semiabiertos o semicerrados). La condición (11.15) impone varias restricciones sobre la posible función de densidad fX .
Esencialmente, esta función debe ser no negativa (fX
0) y su integral (impropia) en R debe
valer uno.
Z
fX (x) dx = p ( 1 < X < +1) = p (E) = 1:
R
A. Roldán
47
11.6. Variable aleatoria continua: la distribución normal
Utilizando esta función de densidad (que, si existe, es única c.p.d.), es posible de…nir los principales parámetros de la variable X. Por ejemplo, llamaremos media (o esperanza matemática) de la variable X, y la denotaremos por X (o por X o por E (X)), al valor real:
Z
[x fX (x)] dx:
X=
R
Igualmente, llamaremos varianza de la variable X al valor
Z h
i
2
2
2
=
s
=
x
X
f
(x)
dx;
X
X
X
R
que, más fácilmente, se calcula como:
2
= X2
X2 =
Z
x2 f (x) dx
X 2:
R
La desviación típica de la variable aleatoria X es la raíz cuadrada no negativa de la varianza:
=
p
2:
De forma análoga podemos de…nir los demás parámetros estadísticos.
11.6.1.
La distribución normal
¿Existe una variable aleatoria que tenga cualquier media (real) y cualquier desviación típica
(no negativa)? Si = 0, la variable es constantemente igual a la media, y hemos acabado.
Este caso es trivial y no nos interesa en lo sucesivo. ¿Y si > 0? La respuesta es positiva y
se puede conseguir con la distribución normal, que tiene una función de densidad ciertamente
peculiar. A partir de ahora, supondremos que las variables que intervengan no son constantes,
es decir, > 0.
De…nición 11.6.2 Sea 2 R cualquier número real y sea 2 R+ cualquier número positivo.
Denotaremos por f ; a la función f ; : R ! R (real de variable real) de…nida por
f
;
1
(x) = p
2
e
1
2
(x
2
) ;
8x 2 R:
Esta función cumple las siguientes propiedades:
1. Es una función positiva (f
;
> 0) y continua en R.
2. Posee un único máximo, que es absoluto y está en el punto de abscisa x = .
3. Posee dos puntos de in‡exión, cuyas abscisas son x =
.
A. Roldán
48
CAPÍTULO 11. VARIABLES UNIDIMENSIONALES
4. Es creciente en ] 1; [ y decreciente en ] ; +1[.
5. Es una función simétrica par respecto de la asíntota vertical x = .
6. El eje de abscisas es asíntota horizontal de f
7. El área total encerrada entre f
y de ), es decir,
;
;
a ambos lados.
y el eje de abscisas es la unidad (independientemente de
Z
f
;
(x) dx = 1:
R
Con todos estos datos, es posible dibujarla de la siguiente manera.
y
y
µ
x
x
El caso más interesante ocurre cuando = 0 y = 1. La función f0;1 está dibujada a la derecha
manteniendo la escala de los ejes; el área determinada por la función f0;1 con el eje de abscisas
es la misma que la del cuadrado unidad.
De…nición 11.6.3 Diremos que una variable aleatoria X sigue una distribución normal de
parámetros
y , y lo denotaremos por X ,! N ( ; ), si es una variable continua cuya
función de densidad es f ; . En el caso particular de que una variable Z siga una distribución
N (0; 1), diremos que posee una distribución normal estándar.
En tal caso, la probabilidad de que la variable X tome valores en un intervalo ]a; b[ coincide
con el área delimitada por la función f ; y el eje de abscisas entre las rectas verticales x = a y
x = b, como en la siguiente …gura.
y
a
Los parámetros
A. Roldán
y
b
x
están íntimamente relacionados con la media y la desviación típica de X.
49
11.6. Variable aleatoria continua: la distribución normal
Teorema 11.6.4 Si X ,! N ( ; ), entonces la media de X es
X= ;
X
y su desviación típica es .
= :
Siempre es posible pasar de una distribución N ( ; ) a una distribución normal estándar
mediante el proceso de tipi…cación que estudiamos en la sección §11.3. Esto quiere decir que
X ,! N ( ; )
)
Z=
X
(11.16)
,! N (0; 1)
Esto nos permite calcular probabilidades normales en cualquier distribución con sólo utilizar la
tabla de la distribución normal estándar. Es lo que haremos a continuación.
Cálculo de probabilidades con la tabla de la distribución normal estándar
2
Es posible demostrar que la función x 2 R 7! e x es continua y positiva en R, de tal
forma que sabemos que es localmente integrable. Por eso, posee alguna primitiva en todo R. Sin
embargo, no es posible expresar dicha primitiva en términos de las funciones elementales que
manejamos. De esta forma, no podemos calcular una integral del tipo
Z b
2
1 x
1
) dx
p (a < X < b) = p
e 2(
2 a
directamente integrando cuando X ,! N ( ; ). Nos vemos obligados a utilizar tablas con probabilidades que han sido calculadas por aproximación. Pero, ¿podemos reducirlas todas a una
sola? La respuesta es que sí: si tipi…camos cada variable, sólo nos hará falta la tabla de la distribución normal estándar. Existen diferentes tipos de tablas. Nosotros vamos a utilizar en lo
sucesivo tablas de colas a la izquierda, es decir, que nos dan las probabilidades de que una
variable normal estándar tome valores menores o iguales que un número no negativo.
y
1
x) = p
2
FZ (x) = p (Z
x
Z
x
e
t2
2
dt:
1
x
A continuación escribimos algunas probabilidades normales utilizando la tabla de colas a la
izquierda. Las calculamos teniendo en cuenta principalmente las siguientes propiedades:
p (Z <
p (a
p( b
Z
Z
a) = p (Z > a) = 1
b) = p (Z
b)
p (Z
a) = p (a
Z
b)
p (Z
a) :
a) :
A. Roldán
50
CAPÍTULO 11. VARIABLES UNIDIMENSIONALES
En lo que sigue, si escribimos 00 0198 = 00 0197 queremos indicar lo siguiente: la primera
aproximación, 00 0198, ha sido calculada con la tabla de la normal estándar, y la segunda aproximación, 00 0197, ha sido calculada con el ordenador. Si no se escribe nada, es porque ambas
coinciden.
p (Z
p (Z < 00 55) = 00 7088:
a) ;
a>0
p (Z
a) ;
a>0
p (Z
a) ;
a<0
p (Z
a) ;
a<0
p (a
Z
a; b > 0
b)
p (Z
10 12) = 00 8686:
p (Z
20 39) = 00 9916:
p (Z
10 98) = 1
p (Z
10 98) = 1
00 9761 = 00 0239:
p (Z
00 25) = 1
p (Z
00 25) = 1
00 5987 = 00 4013:
p (Z
00 76) = 1
p (Z
00 76) = 1
00 7764 = 00 2236:
p (Z <
00 3) = p (Z > 00 3) = 1
p (Z
00 3) = 1
00 6179 = 00 3821:
p (Z
20 5) = p (Z > 20 5) = 1
p (Z
20 5) = 1
00 9938 = 00 0062:
p (Z <
10 48) = p (Z > 10 48) = 1
p (Z >
10 4) = p (Z
p (Z
00 58) = p (Z
00 58) = 00 7190:
p (Z >
30 05) = p (Z
30 05) = 00 9989:
p (00 1 < Z
p (Z
10 48) = 1
00 9306 = 00 0694:
10 4) = 00 9192:
10 05) = p (Z
10 05)
p (Z
00 1) = 00 8531
00 5398 =
= 00 3133:
p (20 03
Z
20 98) = p (Z
20 98)
p (Z
20 03) = 00 9986
00 9788 =
20 17)
p (Z
00 39) = 00 9850
00 6517 =
= 00 0198 = 00 0197:
p (00 39 < Z < 20 17) = p (Z
= 00 3133:
A. Roldán
51
11.6. Variable aleatoria continua: la distribución normal
p (a
Z
p ( 10 31
b)
a; b < 0
10 31)
= p (Z
= p (Z
a < 0 < b;
= p (Z
p (a
Z
b)
[1
Z<
Z
10 59) = p (10 59
20 48)
Z
b) = p (Z
b)
p (Z
a)] = p (Z
a) + p (Z
p ( 10 48
a<0<b
p (Z
00 59) = p (Z
Z
= p (Z
00 59)
= p (Z
00 59) + p (Z
p ( 00 53
00 6443 = 00 197:
20 48) =
Z
10 59) = 00 9934
p (Z
00 59)
= p (Z
10 43)
= p (Z
10 43) + p (Z
10 48)
10 43)
b)
b)
p (Z
a) =
1:
p (Z
10 48) =
00 59)
[1
1 = 00 7224 + 00 9306
p (Z
p (Z > 00 53) = p (Z
00 53)
00 9441 = 00 0493:
a) = p (Z
p (Z > 10 48) = p (Z
10 43) = p (Z
Z
00 7054 = 00 1995:
1) =
00 37) = 00 8413
p (Z
= p (Z
p( a
b)
1)
10 31) =
Z
00 54) = 00 9049
p (Z
00 37) = p (00 37
p( 1 < Z
p ( 20 48
00 54) = p (00 54
Z
p (Z
10 48)] =
1 = 00 653:
00 53) =
10 43)
[1
1 = 00 9236 + 00 7019
p (Z
00 53)] =
1 = 00 6255 =
= 00 6256:
p ( 00 98 < Z < 10 34) = p (Z
= p (Z
10 34)
= p (Z
10 34) + p (Z
10 34)
p (Z
p (Z > 00 98) = p (Z
00 98)
00 98) =
10 34)
[1
1 = 00 9099 + 00 8365
p (Z
00 98)] =
1 = 00 7464 =
= 00 7463:
Calculamos ahora probabilidades con distribuciones normales cualesquiera, tipi…cando en
todo momento. Conviene aprender (y entender) el siguiente razonamiento sobre tipi…cación. En
la práctica, aplicaremos todo el tiempo el siguiente enunciado.
Lema 11.6.5 Si X ,! N ( ; ) y a; b 2 R, a
p (a
donde Z =
X
Demostración :
X
b) = p
a
b, entonces
X
b
(11.17)
,! N (0; 1).
Es claro que las desigualdades con números reales se conservan si restamos a
A. Roldán
52
CAPÍTULO 11. VARIABLES UNIDIMENSIONALES
todos los términos la media
a
X
b
y después dividimos entre el número positivo . Así,
,
a
X
X
a
,
b
,
b
,
a
b
Z
:
Es lo que utilizamos en los siguientes ejercicios.
Ejercicio 22 Si X ,! N (3; 00 8), calcula p (X
Solución :
30 5), p (X < 20 7) y p (2 < X < 30 4).
Si X ,! N (3; 00 8), la variable
X 3
,! N (0; 1)
00 8
Z=
es una variable normal estándar. De esta forma,
30 5 = p
X 3
00 8
30 5 3
00 8
=p Z
p X < 20 7 = p
X 3
00 8
20 7 3
00 8
=p Z
p Z
00 37 = 1
p X
00 63 = 00 7357 = 00 7340:
Igualmente,
=1
00 37 = p Z
00 37 =
00 6443 = 00 3557 = 00 3538:
Finalmente, calculamos:
p 2 < X < 30 4 = p
X 3
00 8
2 3
00 8
=p Z
00 5 + p Z
0
30 4 3
00 8
10 25
p
10 25
Z
1 = 00 6915 + 00 8944
00 5 =
1=
0
= 0 5859 = 0 5859:
Ejercicio 23 Si X ,! N ( 30 25; 8), calcula p (X < 0), p (X
Solución :
X<
20 25).
Por un lado:
p (X < 0) = p
A. Roldán
4) y p ( 40 12
X
( 30 25)
8
0
( 30 25)
8
= p Z < 00 41 = 00 6591 = 00 6577:
53
11.6. Variable aleatoria continua: la distribución normal
De la misma forma:
p (X
4) = p
X
( 30 25)
8
p Z < 00 09 = 1
=1
( 30 25)
8
4
00 09 =
=p Z<
00 5359 = 00 4641 = 00 4626:
Y repitiendo el proceso:
40 12
p
40 12
20 25 = p
X<
=p
( 30 25)
8
00 11
X
00 13 = p Z
Z
= 00 5517 + 00 5438
4
( 30 25)
8
=
00 11
1=
00 13 + p Z
1 = 00 0955 = 00 09304
Ejercicio 24 Si X ,! N (120 4; 10 27), calcula p (80 56 < X
Solución :
( 30 25)
8
140 26) y p (11
X < 13).
Razonamos exactamente igual que antes:
p 80 56 < X
80 56 120 4
10 27
140 26 = p
30 02
=p
120 4
X
10 27
10 46 = p Z
Z
= 00 9279 + 00 9987
140 26 120 4
10 27
10 46 + p Z
=
30 02
1=
1 = 00 9266 = 00 9272:
Y lo repetimos todo igual:
p (11
X < 13) = p
=p
120 4
11
10 27
10 10
X
120 4
10 27
Z
= 00 6808 + 00 8643
00 47 = p Z
13
120 4
10 27
=
00 47 + p Z
10 10
1=
1 = 00 5451 = 00 5465:
Justi…camos a continuación el lema 11.2.1 de la página 36 en el caso de la distribución normal,
pero precisando aún más.
Lema 11.6.6 Si X ,! N ( ; ), entonces:
I En el intervalo X
;X +
se encuentra, aproximadamente, el 68’26 % de la población.
A. Roldán
54
CAPÍTULO 11. VARIABLES UNIDIMENSIONALES
I En el intervalo X
2 ;X + 2
se encuentra, aproximadamente, el 95’45 % de la población.
I En el intervalo X
3 ;X + 3
se encuentra, aproximadamente, el 99’73 % de la población.
Demostración :
p X
Tipi…cando se obtiene lo siguiente:
<X<X+
=p
<X
X<
= p (Z
1)
p (Z
= p (Z
1)
[1
= 2 00 8413
=p
1<
1) = p (Z
p (Z
X
X
1)
p (Z
1)] = 2 p (Z
<1
1)
= p ( 1 < Z < 1) =
1) =
1=
1 = 00 6826:
Igualmente,
p X
2 <X <X +2
= p ( 2 < Z < 2) = 2 p (Z
= 2 00 9772
2)
1=
1 = 00 9544 = 00 9545;
y también
p X
3 <X <X +3
= p ( 3 < Z < 3) = 2 p (Z
= 2 00 9987
11.7.
3)
1=
1 = 00 9974 = 00 9973;
Aproximación de distribuciones binomiales
En muchas ocasiones no es sencillo calcular probabilidades asociadas a una distribución
binomial, pues las fórmulas son bastante complicadas, y además es posible que tengamos que
hacer muchas sumas. Por ejemplo, si X ,! B (20; 00 7), entonces
p (X
12) = p (X = 12) + p (X = 13) + : : : + p (X = 20) =
=
20
12
00 712 00 38 +
20
13
00 713 00 37 + : : : +
20
20
00 720 00 30 :
Estos ocho sumandos no son nada fáciles de calcular, y menos aún su suma. ¿Es imprescindible
calcularlos para conocer p (X 12)? La respuesta es negativa: si podemos aproximar X por
una variable normal, estas probabilidades serán mucho más sencillas de calcular, pero siempre
teniendo en cuenta que se trata de una aproximación. Es el caso del siguiente teorema.
A. Roldán
55
11.7. Aproximación de distribuciones binomiales
Teorema 11.7.1 (de De Moivre) Si X ,! B (n; p) y se tiene que
n p
5
y
n q
5;
(siendo q = 1 p) entonces la variable X se puede aproximar por una variable aleatoria normal
~ que posee su misma media y su misma desviación típica.
X
X
~ ,! N n p; pn p q
X
Es importante aprender a interpretar este teorema. Lo que quiere decir es que, como p y q
están acotadas entre cero y uno, una distribución binomial es tanto más parecida a una normal
cuanto mayor es el número n de repeticiones del experimento. De hecho, la aproximación es
buena si n p; n q 3, y es casi perfecta si n p; n q 5. A medida que n crece, la aproximación
es cada vez mejor (volveremos sobre esta idea en el teorema central de límite §12.2.1).
~ es continua? La variable X acumula su pro¿Cómo es esto posible si X es discreta y X
~ tome un valor concreto es nula.
babilidad en puntos concretos, pero la probabilidad de que X
Realmente, en este caso, debemos tomar el intervalo adecuado:
p (X = k) = p k
00 5
~
X
k + 00 5
Ejercicio 25 Si X ,! B (15; 00 4), calcula p (X = 8) con la fórmula de la binomial y aproximando.
Solución :
Por un lado,
p (X = 8) =
15
8
00 48 00 67
00 11806:
Si aproximamos con una variable
p
~ ,! N (n p; pn p q) = N 6; 30 6
X
N 6; 10 897 ;
tendremos el valor
p 70 5
~
X
80 5 = p
70 5 6
10 897
=p Z
10 32
~ 6
X
10 897
p Z
80 5 6
10 897
!
= p 00 79
00 79 = 00 9066
Z
10 32 =
00 7852 = 00 1214 = 00 1208:
Esta aproximación comete un error relativo del 2’32 %.
Ejercicio 26 Supongamos que X ,! B (40; 00 7). Calcula las siguientes probabilidades, aproximando si es necesario:
p (X = 20) ;
p (X
25) ;
p (20
X
30) :
A. Roldán
56
CAPÍTULO 11. VARIABLES UNIDIMENSIONALES
Solución :
La primera probabilidad se puede calcular con la fórmula (11.14):
p (X = 20) =
40
20
00 720 00 320 = 00 003835 14;
pero tiene bastantes cuentas. Como n p = 40 00 7 = 28 5 y n q = 40 00 3 = 12
~ con distribución
intentar aproximar X con una variable X
p
~ ,! N (n p; pn p q) = N 28; 80 4
X
~
X
200 5 = p
190 5 28
20 898
200 5, de manera que obtenemos:
!
200 5 28
p 20 93 Z
20 59 =
20 898
~ 28
X
20 898
= p 20 59
Z
= 00 9983
00 9952 = 00 031:
N 28; 20 898 :
~
X
Aproximamos el suceso X = 20 con el suceso 190 5
p 190 5
5, vamos a
20 93 = p Z
20 93
20 59 =
p Z
Esta aproximación de p (X = 20) es bastante mala. Ello se debe a que estamos intentando
aproximar un valor puntual de la binomial. Veamos cómo con un intervalo nos va mucho mejor.
La segunda probabilidad es:
p (X
25) =
40
X
p (X = k) =
40
X
40
k
k=25
k=25
00 7k 00 340
k
00 884853;
que se aproxima con:
~
p X
240 5 = p
~ 28
X
20 898
240 5 28
20 898
!
=p Z
10 21 = p Z
10 21 = 00 8869:
Esta aproximación en un intervalo es mucho mejor que la anterior, y cuesta mucho menos trabajo
que calcular la sumatoria anterior (que se ha hecho con ordenador). Igualmente,
p (20
X
30) =
30
X
p (X = k) =
k=20
30
X
k=20
40
k
00 7k 00 340
k
00 801655;
y, por otro lado,
p 190 5
~
X
300 5 = p
190 5 28
20 898
=p Z
~ 28
X
20 898
00 86 + p Z
20 93
300 5 28
20 898
!
p
20 93
1 = 00 8051 + 00 9983
Z
00 86 =
1 = 00 8034:
Esta aproximación también es muy buena, y elimina un montón de tediosos cálculos.
A. Roldán