Download Modelos Animales en Cáncer

Document related concepts

Mariano Barbacid wikipedia , lookup

Transcript
Workshop
Modelos
Animales
en Cáncer
Animal Models for Cancer
Coordinadores
Organizers
Marcos Malumbres
Alberto Martín-Pendás
Francisco X. Real
22-23 Octubre/October 2004
Institut Municipal d’Investigació Mèdica (IMIM), Barcelona
Workshop Animal Models for Cancer
2
Workshop Modelos Animales en Cáncer
Workshop
Modelos
Animales
en Cáncer
Programa
Programme
22-23 Octubre/October 2004
Institut Municipal d’Investigació Mèdica (IMIM), Barcelona
3
Workshop Animal Models for Cancer
Viernes 22 octubre 2004
9:15
Bienvenida-Presentación
Sala Joseph Marull de L’Imas, IMIM
I. Oncogenes y Transducción de Señales
Chairman: ALBERTO MARTÍN-PENDÁS
9:30
ÁNGEL NEBREDA
Centro Nacional de Investigaciones Oncológicas, Madrid
Signal transduction and cell cycle regulation
10:00
MIRENTXU SANTOS
CIEMAT, Madrid
Tumorigénesis epitelial y alteraciones en el desarrollo producidas por una
forma activa de Akt
10:20
CARMEN GUERRA
Centro Nacional de Investigaciones Oncológicas, Madrid
Tumour induction by an endogenous K-ras oncogene
10:40
MANUEL SÁNCHEZ-MARTÍN
IBMCC- CSIC/Universidad de Salamanca, Salamanca
Análisis del inicio y progresión de la leucemia mediante la expresión
condicional del gen BCR-ABL en ratones
11:00
CARME GALLEGO
Universitat de Lleida Catalunya, Lleida
Opposite effects of Kis in neuronal proliferation and differentiation
11:20
Coffee break
II. Ciclo Celular
Chairman: ÁNGEL NEBREDA
11:45
CAYETANO GONZÁLEZ
ICREA i IRBB, Parc Científic de Barcelona, Barcelona
Induction of tumoral growth by altered cell fate in Drosophila
12:15
ALBERTO MARTÍN
Centro Nacional de Investigaciones Oncológicas, Madrid
Cell cycle inhibition and tumor suppression by p27Kip1 and p21Cip1 are
independent of Cdk2
12:35
ANXO VIDAL
Universidad de Santiago de Compostela
La deficiencia de p27Kip1 desenmascara la función antioncogénica de p130 y
p107
12:55
ANA ZUBIAGA
Universidad del País Vasco, Bilbao
Dissecting the unique and shared functions of E2F transcription factors
13:15
IGNACIO PÉREZ DE CASTRO
Centro Nacional de Investigaciones Oncológicas, Madrid
Target validation in vivo of mitotic regulators in cancer
13:45
Lunch
4
Workshop Modelos Animales en Cáncer
III. Stem Cells y Tecnología
Chairman: MARCOS MALUMBRES
15:30
ISIDRO SÁNCHEZ-GARCÍA
IBMCC- CSIC/Universidad de Salamanca, Salamanca
Of man in mouse: modelling human cancer genotype-phenotype correlations in
mice
16:00
SAGRARIO ORTEGA
Centro Nacional de Investigaciones Oncológicas, Madrid
Developing tools to study tumor angiogenesis in the mouse
16:30
OLGA MILLÁN
Instituto de Alta Tecnología, PRBB, Barcelona
Imagen molecular in vivo: abordajes multimodales para el seguimiento de
tumores
16:50
MICHEL HERRANZ
Centro Nacional de Investigaciones Oncológicas, Madrid
MRI and PET follow-up of the anti-tumoral effect of Histone Deacetylases
Inhibitors (HDACIs) in a gamma-irradiated mouse lymphoma model
17:10
17:30
Coffee break
LUIS A. HERRÁEZ BARANDA
ZF Biolabs, Madrid
Zebrafish as an experimental model in cancer
17:50
DIRK BUSCHER
Genetrix S.L., Madrid
Zebrafish: more than a developmental biologist's new toy
18:10
Mesa redonda: Plataformas tecnológicas y necesidades futuras
Participantes: M. ÁNGELA NIETO, ISIDRO SÁNCHEZ-GARCÍA, SAGRARIO ORTEGA,
CRISTINA FILLAT, ANXO VIDAL
20:30
Cena del Meeting
5
Workshop Animal Models for Cancer
Sábado 23 Octubre 2004
IV. Señalización Celular y Metástasis
Chairman: RAMÓN MANGUES
9:30
CRISTINA LÓPEZ-RODRÍGUEZ
Centre de Regulació Genòmica, Barcelona
Loss of NFAT5 in mice causes growth deficiency and lack of expression of an
osmoprotective transcription program in kidney
9:50
JOSE ARAMBURU
Universitat Pompeu Fabra, Barcelona
Caracterización de la interacción del factor de transcripción NFAT5 con
proteínas reguladoras
10:10
MARÍA PÉREZ-CARO
IBMCC- CSIC/Universidad de Salamanca, Salamanca
Snail overexpression in development and cancer
10:30
MANUEL SÁNCHEZ-MARTÍN
IBMCC- CSIC/Universidad de Salamanca, Salamanca
Slug in cancer development
10:50
ALBERTO MARTÍN-PENDÁS
Instituto Universitario de Oncología del Principado de Asturias, Oviedo
Dual roles of MMPs in cancer progression
11:10
Coffee break
V. Ciclo Celular e Inestabilidad Cromosómica
Chairman: ISIDRO SÁNCHEZ-GARCÍA
11:30
MARÍA A. BLASCO
Centro Nacional de Investigaciones Oncológicas, Madrid
New mouse models of telomere dysfunction
12:00
PURA MUÑOZ-CÁNOVES
Centre de Regulació Genòmica, Barcelona
Sequential phosphorylation of p53 by ATM and ATR kinases in response to
MNNG-induced DNA damage: activation of PAI-1 gene expression by MNNG
12:20
IGNACIO MORENO DE ALBORÁN
Centro Nacional de Biotecnología, Madrid
C-Myc regulates cell size and ploidy but is not essential for postnatal
proliferation in liver
12:40
RAÚL MENDEZ
Centre de Regulació Genòmica, Barcelona
Xenopus oocytes as a model to study translational control of cell cycle
13:10
JORDI SURRALLES
Universidad Autónoma de Barcelona
Linking chromatin and chromosome fragility: involvement of histone H2AX in
the Fanconi anemia/BRCA tumour supressor pathway
6
Workshop Modelos Animales en Cáncer
13:30
Lunch
VI. Modelos Preclinicos de Terapia Antitumoral
Chairman: FRANCISCO X. REAL
15:00
MANUEL GUZMÁN
Universidad Complutense de Madrid
Cannabinoides: ¿Posibles agentes antitumorales?
15:30
RAMON MANGUES
Hospital de Sant Pau, Barcelona
La expresión ectópica de E-cadherina favorece el crecimiento de metástasis
retroperitoneales en un modelo ortotópico de carcinoma de colon
15:50
MARIA VIRTUDES CÉSPEDES
Hospital de Sant Pau, Barcelona
Desarrollo de un modelo de manipulación genética ex vivo e implantación
ortotópica para el estudio de capacidad metastásica de las proteinas de la
famila Rho.
16:10
JOANA VISA
Institut de Recerca Oncologica, Barcelona
A standarized protocol applied in the animal facility (SE-IRO) for humane
endpoints in mouse models for cancer research
16:30
HÉCTOR PEINADO
Instituto de Investigaciones Biomédicas, Madrid
A key role for ß-catenin in mouse skin carcinogenesis
16:50
Despedida
7
Workshop Animal Models for Cancer
8
Workshop Modelos Animales en Cáncer
Workshop
Modelos
Animales
en Cáncer
Resúmenes
Abstracts
22-23 Octubre/October 2004
Institut Municipal d’Investigació Mèdica (IMIM), Barcelona
9
Workshop Animal Models for Cancer
JOSÉ ARAMBURU
[email protected]
Caracterización de la interacción del factor de transcripción NFAT5 con
proteínas reguladoras
Cristina López-Rodríguez 2, Beatriz Morancho 1, Jordi Minguillón 1 & Jose Aramburu 1.
1
2
Departament de Ciències Experimentals i de la Salut. Universitat Pompeu Fabra, Barcelona.
Cancer and Differentiation Programme. Centre de Regulació Genòmica, Barcelona.
NFAT5 es un factor de transcripción de mamíferos que pertenece a la familia Rel (NF- B y NFATc).
Aunque NFAT5 muestra una alta homología con los NFATc a nivel de su dominio de unión a DNA, sin
embargo difiere de ellos en cuanto a su regulación. NFAT5 reconoce el mismo motivo de secuencia
de DNA que los NFATc pero en contraste con éstos no interacciona con AP-1 (Jun y Fos). Otra
diferencia importante entre los NFATc y NFAT5 es que éste no depende de la fosfatasa calcineurina
para activarse y translocar al núcleo. NFAT5 es activado por hipertonicidad y regula la expresión de
genes osmoprotectores. Además, NFAT5 puede ser activado por señales transducidas por integrinas
y también es inducido en respuesta a estimulación antigénica en linfocitos. La inducción de NFAT5
via TCR en linfocitos depende en parte de la activación de la calcineurina. Aparte de la función
osmoprotectora de NFAT5, se desconocen en gran medida sus mecanismos de regulación así como
su papel en respuesta a otros estímulos. Dado que la expresión de NFAT5 es regulada por la
calcineurina en linfocitos hemos investigado si NFAT5 es capaz de regular procesos dependientes de
calcineurina. Nuestros resultados indican que NFAT5 puede interaccionar con proteínas NFATc y que
es capaz de potenciar la activación de éstos dependiente de la calcineurina. Este efecto es no
requiere la actividad transcripcional de NFAT5, indicando que NFAT5 podría regular la función de
proteínas NFATc independientemente de su propia función transcripcional. Hemos determinado que
NFAT5 también puede asociarse a la calcineurina por un mecanismo distinto al utilizado por los
NFATc. Además hemos iniciado la identificación de proteínas asociadas a NFAT5 para entender
cómo se regula este factor y su posible papel más allá de la respuesta a hipertonicidad.
10
Workshop Modelos Animales en Cáncer
11
Workshop Animal Models for Cancer
MARÍA A. BLASCO
[email protected]
New mouse models of telomere dysfunction
Purificación Muñoz1, Raquel Blanco1, Susana Gonzalo1, Marta Garcia-Cao1, Gunnar Schotta2,
Thomas Jenuwein2, Juana M. Flores3 & María A. Blasco1
1
Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre
(CNIO), Madrid, Spain
2
Research Institute of Molecular Pathology (IMP), Vienna Biocenter, Vienna, Austria
3
Animal Surgery and Medicine Department, Facultad de Veterinaria, Universidad Complutense de
Madrid, Madrid, Spain
Telomeres are chromosome end-capping structures, which protect the chromosome ends from
unscheduled DNA repair and degradation. Telomeres are heterochromatic domains composed of
repetitive DNA (TTAGGG repeats) bound to an array of specialized proteins. The length of telomere
repeats and the integrity of telomere-binding proteins are both important for telomere protection. In
addition, we have recently shown that telomere length is regulated by a number of epigenetic
modifications, thus pointing to a higher-order control of telomere function.
First, we will describe a novel role for the Rb family of proteins in directing full heterochromatin
formation. We show that mouse embryonic fibroblasts triply deficient for Rb, p107 and p130 have a
decrease in methylation of pericentric DNA. Using chromatin Immunoprecipitation (ChIP), we show
that tri-methylation of H4K20 by the Suv4-20h1 and Suv4-20h2 histone methyltransferases is
specifically decreased at pericentric and telomeric chromatin. These defects are independent of E2F
family function, as well as of the expression and localization of the Suv4-20h enzymes, indicating a
direct role of the Rb family in controlling H4-K20 tri-methylation at telomeres and centromeres by these
novel HMTases. These epigenetic abnormalities are accompanied by telomere and centromere
defects, by errors in chromosome segregation, and by stabilization of tetraploidy. Together, these
observations indicate a role for the Rb family of proteins in maintaining overall chromatin structure and
in particular that of telomeres and centromeres. These findings represent a bridge between tumor
suppressor function and the epigenetic definition of heterochromatin.
Secondly, we will describe the generation and characterization of mice with constitutive
expression of the telomere-binding protein TRF2 under the keratin 5 promoter, K5-TRF2 mice. These
mice represent the first viable mouse model with altered TRF2 expression described to date. K5TRF2 mice show a remarkable phenotype in the skin consisting of hyper-pigmentation, hair loss, dry
skin, as well as spontaneous pre-neoplastic lesions, all of which are reminiscent of the skin
abnormalities characteristic of Xeroderma pigmentosum (XP) syndrome. At a cellular and molecular
level, the skin of these mice presents a dramatic telomere shortening, loss of the telomeric G-strand
overhang, as well as numerous -H2AX foci. K5-TRF2 skin is also more sensitive to UV irradiation, as
indicated by increased UV-induced DNA adducts and pre-neoplastic lesions. We propose that the XPlike skin phenotypes described here for K5-TRF2 mice are the result of a combination of defective
DNA repair together with short telomeres, thus pinpointing to the roles of TRF2 in the context of the
organism. In addition, this new mouse model demonstrates the impact of altered TRF2 expression
both on cancer and aging.
12
Workshop Modelos Animales en Cáncer
13
Workshop Animal Models for Cancer
DIRK BUSCHER
[email protected]
Zebrafish: more than a developmental biologist's new toy
Dirk Buscher
Genetrix S.L., Madrid
The zebrafish (Danio rerio) has entered the club of model systems several years ago, mainly due to
the extremely successful first large-scale mutagenesis screens in Tübingen (Germany) and Boston
(USA). Zebrafish has primarily been used by developmental biologists, who showed a high interest in
this small vertebrate. Since the 1990’s the group of researchers utilizing zebrafish for their studies has
grown tremendously. Techniques and tools have been refined, new ones developed, and an increased
effort can been seen to combine 21st century tools with zebrafish – the era of high throughput
applications. In this presentation I want to give an overview of the model system Danio rerio, its
advantages and limitations. How can the model zebrafish be applied to cellular processes and
diseases such as apoptosis and cancer, respectively? Can zebrafish be more than just another
vertebrate model?
14
Workshop Modelos Animales en Cáncer
15
Workshop Animal Models for Cancer
MARÍA VIRTUDES CÉSPEDES
[email protected]
Desarrollo de un modelo de manipulación genética ex vivo e implantación
ortotópica para el estudio de capacidad metastásica de las proteinas de la
famila Rho
M.V. Céspedes1, T. Gómez2, C. Espina2, A. Boluda2, F.J. Sancho1, M. Trias1, R. Mangues1 & J.C.
Lacal2
1
2
Lab. d’Investigació Gastrointestinal, Institut de Recerca, Hospital Sant Pau, Barcelona
Instituto de Investigaciones Biomédicas, Madrid
Uno de los mayores problemas que tiene la oncología experimental es la falta de modelos de
experimentación in vivo que simulen lo más posible la respuesta de los tumores al tratamiento en
pacientes. Una solución es el establecimiento de sistemas de tumores humanos implantados
ortotópicamente en ratones, cuyo crecimiento simula el de su ubicación original en pacientes, y que
permiten analizar la actividad antitumoral de nuevos fármacos. En este estudio se pretende poner a
punto un modelo experimental que permita analizar la actividad in vivo de fármacos frente a tumores
en los que las GTPasas Rho juegan un papel relevante. Para ello, se ha desarrollado un modelo que
combina la manipulación genética ex vivo de células de carcinoma de colon humano, seguido de
xenotrasplante ortotópico en ratón atímico. Este, nos permite estudiar las alteraciones del fenotipo
tumoral (crecimiento, invasión y metástasis) y los efectos tras un tratamiento. Se han utilizado las
líneas celulares derivadas de tumores colorrectales humanos, HCT-116, SW620 y DLD1, con distinta
morfología y agresividad caracterizando su patrón de tumorigenicidad y metástasis y la supervivencia
de los animales. Estas líneas han sido manipuladas genéticamente mediante transfección, alterando
la expresión de genes silvestres que codifican para GTPasas de la familia Rho. Se ha establecido,
por tanto, un modelo que combina la manipulación ex vivo con la inyección ortotópica in vivo. Este
sistema facilitará el estudio de la actividad antitumoral de nuevos fármacos que actúan en las rutas de
señalización de las GTPasas Rho.
16
Workshop Modelos Animales en Cáncer
17
Workshop Animal Models for Cancer
GARDENIA FRESNEDA
[email protected]
Proteolysis as a target for cancer therapy: Cdc20 and the Anaphase Promoting
Complex
Gardenia Fresneda1, Irene García-Higuera2, Sergio Moreno2 & Marcos Malumbres1
1
2
Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid
Centro de Investigación del Cáncer-CSIC, Salamanca
The anaphase promoting complex (APC) is a multimeric complex that ubiquitinate cyclins and other
cell cycle regulators. APC activity rises abruptly at metaphase, resulting in the destruction of proteins
that inhibit sister-chromatid separation. APC-dependent destruction of additional regulators initiates
spindle disassembly, cytokinesis and the resetting of replication origins for the next cell-division cycle.
Cdc20 and Fzr1 (also named as Cdh1) are activators and substrate-specific adaptor proteins for APC.
Cdc20 activity is replaced by that of Fzr1 during mitotic exit, and the role of Fzr1 in suppressing mitotic
cyclins is essential to establish the G1 phase of the cell cycle. However, this switch from Cdc20 to
Fzr1 is thought to allow degradation of many additional substrates because APC/CFzr1 has been
shown to have broader substrate specificity than APC/CCdc20. Amongst the regulators degraded
during mitotic exit in mammalian cells are B-type cyclins, securin, the polo-like kinase 1 (Plk1), Aurora
kinases, and the CENP-E motor. Since many of these substrates are putative oncogenes, both Cdc20
and Fzr1 can act as tumor suppressor proteins in cancer development.
18
Workshop Modelos Animales en Cáncer
19
Workshop Animal Models for Cancer
JAVIER GALÁN
[email protected]
Lack of protein versus lack of function: Generation of gene-targeted
conditional knock-out and kinase-dead knock-in models in the mouse
Javier Galán, David Santamaría & Mariano Barbacid
Experimental Oncology Group, Centro Nacional de Investigaciones Oncológicas, Madrid
Cancer disease is characterized by uncontrolled cell proliferation. Cell cycle is a process very tightly
regulated in eukaryotic organisms by several kinases such as the Cdk proteins (Cyclin-dependent
kinase). Cdks consists of a family of Ser/Thr kinases responsible for the phosphorylation of certain key
substrates which, eventually, leads to progression through the different phases of cell cycle.
Completion of G1 phase and entry into S phase require the activity of at least two different types of
Cdks: Cyclin D-type (Cdk4 and Cdk6) and Cyclin E-type Cdks (Cdk2). All of them phosphorylate Rb
protein in order to inactivate it, allowing the release of different transcription factors. Until very recently
Cdk4 and Cdk6 were considered essential for cell cycle progression. We have recently shown that
single Cdk41 and Cdk62 knock out mice are viable and that primary cultures are able to survive and
progress through cell cycle without either of these Cdks. However double KO animals are embryonic
lethal. This embryonic lethal phenotype makes impossible testing whether these Cdks are necessary
in normal cells or tumor cells in adult mice. To this end we are generating Cdk4 conditional knock out
mice using Cre/loxP system in order to obtain double Cdk4/6 knock out adult animals. Using this
model will also allow us to study Cdk4 as a potential therapeutical target for cancer. However, several
data suggest that these knock out models do not mimic exactly therapeutic treatments, where the
targeted protein is inhibited but not eliminated. To ascertain whether there are any differences in both
scenarios we are also generating a conditional Cdk4 K35M mutant mouse that results in a kinase
dead form of Cdk4.
1) Rane et al. Nat. Genet. 22, 44-52, 1999.
2) Malumbres et al. Cell 118, 493-504, 2004.
20
Workshop Modelos Animales en Cáncer
21
Workshop Animal Models for Cancer
CARME GALLEGO
[email protected]
Opposite effects of Kis in neuronal proliferation and differentiation
Serafí Cambray, Martí Aldea & Carme Gallego
Cell Cycle Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida Catalunya,
Lleida
As a cellular differentiation process, neurogenesis requires the precise coordination of cell cycle exit,
maintenance of conditions that prevent apoptosis, and expression of a set of genes that commit the
precursor cell to specific neuronal cell types. That the control of these processes is extremely
important is underlined by pathologies such as neuroblastoma, a precocious cancer, or
neurodegenerative illnesses, as neuronal survival also seems to depend on the ability of cells to
remain fully differentiated. Our group is using cortical precursor cells from E12.5 mouse embryos two
study the molecular mechanisms that coordinate cell cycle arrest and neuronal differentiation.
Published data as well as our own results suggest that FGF and BDNF signaling molecules induce
completely opposite effects in cortical precursor cells. While FGF activates proliferation, BDNF
behaves as a very active differentiating agent. Our hypothesis proposes that FGF and BDNF induce
such disparate processes through specific activation or inhibition of nucleo-cytoplasmic localization of
p27Kip1 and the activity of Kis (kinase interacting with stathmin). Our data suggest that 1) bFGF
requires Kis to prevent accumulation of p27Kip1 in the nucleus and 2) Kis is essential for survival of
differentiated neurons. Elucidation of the molecular mechanism whereby Kis participates in the
regulation of this two process and how Kis is regulated will allow fundamental insights into the
coupling of terminal mitosis and induction of the neuronal phenotype.
22
Workshop Modelos Animales en Cáncer
23
Workshop Animal Models for Cancer
CAYETANO GONZÁLEZ
[email protected]
Induction of tumoral growth by altered cell fate in Drosophila
Cayetano González
Cell Division Group. ICREA & IRBB, Parc Científic de Barcelona, Barcelona
Modelling cancer in Drosophila: We are starting to exploit Drosophila to learn some basic principles
regarding cell proliferation and malignant growth. As a first step we have designed a model that
reproduces the most significant landmarks of cancer, including genomic instability.
24
Workshop Modelos Animales en Cáncer
25
Workshop Animal Models for Cancer
CARMEN GUERRA
[email protected]
Tumour induction by an endogenous K-ras oncogene
Carmen Guerra, Nieves Mijimolles, Victoria Campuzano, Lucía Pérez* & Mariano Barbacid.
Molecular Oncology Programme and Comparative Pathology Unit*, Centro Nacional de
Investigaciones Oncológicas (CNIO), Madrid
We have targeted a K-ras allele in mouse embryonic stem cells by incorporating the oncogenic
mutation in codon 12 (K-rasV12). To control expression of this allele, we inserted a floxed
transcriptional STOP cassette within the first intron. Finally, to monitor its expression, we inserted an
IRES-b-geo cassette between the stop codon and polyA signal. Activation of this targeted K-rasV12
allele is carried out by a resident inducible Cre-ERT2 recombinase after exposure to 4-OHT (1).
Systemic and postnatal treatment of P10 mice with 4-OHT for 6 months results in K-rasV12 oncogene
expression in a significant percentage of cells ranging from 15% in lung to 85% in colon. Seven
months after treatment, these mice develop multiple bronchiolo-alveolar adenomas in their lungs. No
significant additional pathologies were observed. Surprisingly, pancreas and colon, two organs in
which human tumours display a high frequency of K-ras mutations (90% and 50% respectively), were
completely normal. These observations indicate that tumour development induced by an endogenous
K-ras oncogene is highly dependent upon cellular context. Moreover, the timing of activation also
appears to be critical. Expression of the targeted K-rasV12 oncogene in the developing pancreas of
mid-gestation embryos (E14.5) results in the development of pancreatic intraepithelial neoplasias
(PanIN) that closely recapitulate the lesions observed in human patients. These observations indicate
that the existence of cells permissive for K-rasV12 transformation not only depends on the tissue of
origin but on their developmental stage. These permissive cells are likely to correspond with particular
cell types, most likely stem cells. The molecular bases for the permissiveness and/or resistance to KrasV12 oncogenic transformation are currently being investigated.
(1) Guerra, C., Mijimolle, N., Dhawahir, A., Dubus, P., Barradas, M., Serrano, M., Campuzano, V., &
Barbacid, M. (2003). Tumor induction by an endogenous K-ras oncogene is highly dependent on
cellular context. Cancer Cell 4, 111-120.
26
Workshop Modelos Animales en Cáncer
27
Workshop Animal Models for Cancer
MANUEL GUZMAN
[email protected]
Cannabinoides: ¿Posibles agentes antitumorales?
Manuel Guzmán
Universidad Complutense de Madrid
Los cannabinoides de Cannabis sativa y sus derivados sintéticos pueden controlar la decisión
supervivencia/muerte celular a través de sus receptores específicos CB1 (“receptor central”) y CB2
(“receptor periférico”). La administración intratumoral de cannabinoides, tanto psicoactivos (agonistas
CB1) como no psicoactivos (agonistas CB2), conduce a la regresión de tumores cerebrales malignos
en ratas y ratones sin efectos colaterales importantes. Ello parece estar mediado tanto por la
inducción directa de apoptosis de células tumorales como por la inhibición de la angiogénesis
tumoral. En el primer caso, los cannabinoides producen apoptosis de células de glioma induciendo la
síntesis de novo del segundo mensajero lipídico ceramida, lo que conlleva la activación sostenida de
ERK y la inhibición de Akt. En el segundo caso, los cannabinoides parecen afectar a la vía del VEGF.
En biopsias de astrocitomas humanos la expresión del receptor CB2 es proporcional al grado de
malignidad, lo que podría hacer a estos tumores susceptibles al tratamiento con ligandos no
psicoactivos y a este receptor un posible marcador de malignidad. Además, los cannabinoides
parecen ser compuestos antitumorales selectivos, ya que no suelen afectar significativamente a la
viabilidad de las células normales, a las que pueden incluso proteger frente a estímulos tóxicos. Así,
los cannabinoides estimulan tanto in vitro como en el cerebro in vivo la proliferación y diferenciación
glial de precursores neurales, y protegen de muerte a los astrocitos mediante la activación de Akt.
Aunque estos hallazgos pueden ser esperanzadores, se precisa sin duda más investigación preclínica
y clínica para dilucidar si los cannabinoides podrían emplearse algún día (aparte de como paliativos)
como agentes terapéuticos en oncología.
28
Workshop Modelos Animales en Cáncer
29
Workshop Animal Models for Cancer
LUIS HERRÁEZ-BARANDA
[email protected]
Zebrafish as an experimental model in cancer
Luis A. Herráez Baranda
ZF Biolabs, Tres Cantos, Madrid
Zebrafish is a teleost fish of 3-4 cm. long original from tropical waters. This organism has several
advantages for its use as an animal model in biomedical research, of which the most relevant are its
small size, a very high reproductive rate, fast embryonic development that enables high scale studies
at low costs, the embryo transparency, that allows a direct observation of alterations in the phenotype,
and its genomic and proteomic similarity with other vertebrates, the human being included. These
characteristics make the zebrafish an excellent experimental model to decipher the genetic basis of
cancer. Studies with zebrafish have been carried out introducing random mutations and localizing the
mutated gene that is responsible for the observed phenotype (forward genetics), as well as blocking
the expression of the genetic content and studying the resulting phenotype (reversal genetics). On the
other hand, the zebrafish embryo is becoming an increasingly popular model to perform highthroughput screenings of small molecules with a putative antitumoral activity, due to its lower ethical
constraints and the possibility to test the compound in a whole organism. The last advances in
genomics, such as development of DNA microarrays and the zebrafish genome sequencing project,
along with the efforts to obtain stem cell lines or the development of the chemical genomics approach
will contribute to the growing importance of this organism in the modelling of human diseases in
general and cancer in particular.
30
Workshop Modelos Animales en Cáncer
31
Workshop Animal Models for Cancer
MICHEL HERRANZ
[email protected]
MRI and PET follow-up of the anti-tumoral effect of Histone Deacetylases
Inhibitors (HDACIs) in a gamma-irradiated mouse lymphoma model
Michel Herranz1, Juan Martín Caballero2,Jesús Ruíz-Cabello3, Manuel Desco4 & Manel Esteller1
1
Cancer Epigenetics Laboratory, Molecular Pathology Program, Centro Nacional de Investigaciones
Oncológicas (CNIO), 28029, Madrid
2
Animal Facility, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid
3
Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, 28040 Madrid
4
Medical Imaging Laboratory. Hospital Gregorio Marañón. E-28007. Madrid
Pharmacological manipulation of chromatin remodelling process by histone deacetylase inhibitors
(HDACis) might develop into a potent and specific strategy for the treatment of cancer. Alterations in
histone acetylation may lead to changes in chromatin structure and transcriptional deregulation of
genes. We used a mouse model of radiation-induced lymphomagenesis. In this model we performed a
complete and exhaustive non-invasive imaging follow-up of HDACis treatment compare to PBS
treatment as a control group. Our goal is to analyse the effect of histone deacetylase inhibitors in
tumor initiation and progression. One hundred animals were irradiated and nine histone deacetylases
inhibitors assays were evaluated. Intraperitoneal inoculation of six drugs (Valproate, Butyrate (2
different doses), TSA, SAHA, LAQ (2 different doses) and MS275) was performed, 10 animals each (5
males and 5 females) and one control assay: PBS (Phophate Buffer Saline) inoculation. Each mouse
was imaged with a periodicity of 2 weeks after the establishment of the treatment using conventional
T2-weighted fast spin echo sequences and 18F-FDG-PET (Possitron Emission Tomography) follow up
of tumor metabolism. Significant decrease of tumor size has been found with several HDAC inhibitors
and a protective and palliative effect of HDACi in the development of thymic lymphomas was found.
Nuclear magnetic resonance imaging results confirm that surviving animals present a thymus structure
and volume similar to controls one. Moreover, imaging analysis by Nuclear Magnetic Resonance and
PET demonstrate that non-irradiated but HDACIs treated animals, and one-year surviving animals
show no differences in thymus volume, structure, density or location compare to control animals.
Detailed pathological analysis discard toxicity of these compounds. HDAC inhibitors remain one of the
most promising classes of new anticancer agents. Further studies are currently in progress to
delineate the optimal dosage and the duration of therapy.
32
Workshop Modelos Animales en Cáncer
33
Workshop Animal Models for Cancer
CRISTINA LÓPEZ-RODRÍGUEZ
[email protected]
Loss of NFAT5 in mice causes growth deficiency and lack of expression of an
osmoprotective transcription program in kidney
Cristina López-Rodríguez1,2 & Anjana Rao2
1
Centro de Regulación Genómica (CRG), Barcelona, 2The Center for Bood Research and Pathology
Department, Harvard Medicval School, Boston, USA
NFAT5 is a transcription factor that belongs to the Rel (NFATc/ NF- B) family of proteins. Its DNAbinding domain has features of both NF- B and NFATc proteins. Like NF- B, NFAT5 binds DNA as
an obligate dimer, but recognizes the prototypical DNA sequences bound by NFATc proteins. Out of
the DNA binding domain, NFAT5 differs substantially from NFATc and NF- B. NFAT5 is restricted to
vertebrates. However, Drosophila, that lacks NFATc proteins, expresses dNFAT, a transcription factor
whose DNA-binding domain is highly homologous to NFAT5. dNFAT has been shown to genetically
interact with KSR and the Ras pathway, Ras85D or pannier, and participate in growth-related
processes. Moreover, overexpression of dNFAT in the nervous system alters synapse formation and
axon guidance during fly development. NFAT5 does not seem to be regulated by the same signaling
pathways that control the activity of NFATc or NF- B proteins. NFAT5 is activated by hypertonicity,
induced in response to mitogens in lymphocytes, and upregulated and activated through the prometastatic integrin 6/ 4 in carcinoma cells. These responses are possibly mediated by different
mechanisms, which at present are poorly understood. We have analyzed the function of NFAT5 by
generating a mouse model that does not express NFAT5. In the mouse, NFAT5 protein is expressed
in most organs during embryonic development but its levels are very low or undetectable in most adult
tissues except for abundant expression at sites with high cellular proliferation, such as thymus and
testis. Deletion of NFAT5 affected both embryonic and perinatal survival. A fraction of the NFAT5-null
mice survived into adulthood and revealed a striking growth phenotype with an overall reduction of
body and organ size to about half of wild-type littermates. In addition, the life-span of adult NFAT5null mice is severely compromised, in part due to progressive renal atrophy as mice age, caused by
the lack of an osmoprotective gene expression program at the kidney medulla and defective
regeneration of a functional medullary region. The kidney phenotype of NFAT5-null mice provides a
demonstration of its role in the osmoprotective response. However, it does not explain the embryonic
mortality and growth defects observed, indicating that NFAT5 has additional functions connected to
cell growth.
34
Workshop Modelos Animales en Cáncer
35
Workshop Animal Models for Cancer
RAMÓN MANGUES
[email protected]
La expresión ectópica de E-cadherina favorece el crecimiento de metástasis
retroperitoneales en un modelo ortotópico de carcinoma de colon
Mª Virtudes Céspedes1, María Jesús Larriba2, M. Parreño1, Paloma Ordóñez-Morán2, Isolda
Casanova1, Miguel Angel Pavón1, F. Joseph Sancho1, Manuel Trias1, Alberto Muñoz2 & Ramón
Mangues1
1
Laboratori d’Investigació Gastrointestinal, Institut de Recerca, Hospital de Sant Pau, Barcelona
Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones
Científicas-Universidad Autónoma de Madrid
2
Hemos estudiado el efecto de la expresión ectópica de Snail y E-cadherina sobre la invasividad y la
aparición de metástasis en un modelo de xenotransplante ortotópico en ratón atímico de células de
carcinoma de colon humano SW480-ADH. Se han inyectado en la pared colónica tres tipos de células
SW480-ADH en sendos grupos de 8 animales: a) células infectadas con un retrovirus control
expresando la proteína GFP (células GFP), b) células transducidas con el gen Snail de ratón
mediante infección retroviral (GFP-Snail); y c) células transfectadas establemente con el gen Ecadherina y transducidas igualmente con Snail (GFP-Snail + E-cadherina). Las células GFP y GFPSnail muestran similar capacidad invasiva y patrón de metástasis y de muerte de los animales; ello
indica que Snail no potencia la capacidad metastásica en este modelo. Por el contrario, la
coexpresión de Snail y E-cadherina (células GFP-Snail + E-cadherina) induce un dramático aumento
del número y de la tasa de crecimiento de las metástasis retroperitoneales (pero no de las hepáticas n
i ganglionares), reduciendo a la mitad la supervivencia de los animales. Estamos investigando las
bases moleculares de este efecto. Una hipótesis es que la Ecadherina sea proteolizada en el contexto
de las metástasis retroperitoneales, lo que podría causar la disrupción de los contactos célula-célula y
la acumulación y translocación nuclear de la beta-catenina, con inducción de su actividad
transcripcional.
36
Workshop Modelos Animales en Cáncer
37
Workshop Animal Models for Cancer
ALBERTO MARTÍN
[email protected]
Cell cycle inhibition and tumor suppression by p27Kip1 and p21Cip1 are
independent of Cdk2
Alberto Martín,1 Junko Odajima,1 Sarah L. Hunt,1 Pierre Dubus,2 Sagrario Ortega,1 Marcos
Malumbres1 & Mariano Barbacid1
1
Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029
Madrid, Spain.
2
E.A. 2406, Histologie et Pathologie Moléculaire, University of Bordeaux 2, 33076 Bordeaux, France.
Genetic studies have indicated that Cdk2, a kinase thought to be essential for cell cycle progression,
is dispensable for mitotic cell division (Ortega et al. Nat. Genet. 2003, Berthet et al. Curr. Biol. 2003)
These observations have raised questions regarding other proposed roles for Cdk2 including
mediating the tumor suppressor activities of p27Kip1 and p21Cip1 cell cycle inhibitors. Ablation of Cdk2 in
p27Kip1 deficient mice does not revert organomegalia, retinal dysplasia or pituitary tumor development.
Cdk2 is also dispensable for p21Cip1-induced cell cycle arrest after DNA damage. Finally, ectopic
expression of p27Kip1 and p21Cip1 induces cell cycle arrest in cells lacking Cdk2. These results indicate
that Cdk2 is not an essential target for either p27Kip1 or p21Cip1. Moreover, they raise a note of caution
regarding the suitability of Cdk2 as a target for therapeutic intervention, at least in those tumors
lacking Cip/Kip tumor suppressors.
38
Workshop Modelos Animales en Cáncer
39
Workshop Animal Models for Cancer
ALBERTO MARTÍN-PENDÁS
[email protected]
Dual roles of MMPs in cancer progression
Alberto M Pendas, Alicia Folgueras, Milagros Balbín & Carlos López-Otín
Instituto Universitario de Oncología Principado de Asturias, Oviedo
Over the last years, the relevance of the matrix metalloproteinase (MMP) family in cancer research
has grown considerably. These enzymes were initially associated with the invasive properties of
tumour cells, owing to their ability to degrade all major protein components of the extracellular matrix
(ECM) and basement membranes. However, further studies have demonstrated the implication of
MMPs in early steps of tumour evolution, including stimulation of cell proliferation and modulation of
angiogenesis. The establishment of causal relationships between MMP overproduction in tumour or
stromal cells and cancer progression has prompted the development of clinical trials with a series of
inhibitors designed to block the proteolytic activity of these enzymes. Unfortunately, the results derived
from using broad-spectrum MMP inhibitors (MMPIs) for treating patients with advanced cancer have
been disappointing in most cases. This may be partly because broad-range inhibitors also reduce
host-protective antitumor properties of individual MMPs. We generated mice deficient in collagenase-2
(Mmp8), an MMP mainly produced by neutrophils in inflammatory reactions and detected in some
malignant tumors. Loss of Mmp8 did not cause abnormalities during embryonic development or in
adult mice. Contrary to previous studies with MMP-deficient mice, however, the absence of Mmp8
strongly increased the incidence of skin tumors in male Mmp8(-/-)mice. Bone marrow transplantation
experiments confirmed that Mmp8 supplied by neutrophils was sufficient to restore the natural
protection against tumor development mediated by this protease in male mice.
On the other hand, we have generated mice deficient in MMP-19, an MMP widely expressed
in human tissues which has been associated with ovulation and angiogenic processes and is
deregulated in diverse pathological conditions such as rheumatoid arthritis and cancer. These mice
are viable and fertile and do not display any obvious abnormalities. However, Mmp19-null mice exhibit
decreased susceptibility to skin tumors induced by chemical carcinogens. Based on these results, we
suggest that this enzyme plays an in vivo role in some of the tissue remodeling events associated with
tumor progression.
40
Workshop Modelos Animales en Cáncer
41
Workshop Animal Models for Cancer
JORGE MARTINALBO
[email protected]
Modelling Polo kinase function and degradation in the mouse
Jorge Martinalbo & Marcos Malumbres
Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid
The maintenance of genomic integrity in eukaryotic organisms depends on the error-free segregation
of chromosomes during mitotic cell division. This is ensured by several checkpoint mechanisms, the
inactivation of which could eventually contribute to carcinogenesis. Entry into mitosis in vertebrates is
guarded by a G2/M checkpoint that can be activated by certain insults, such as chromosomal and
microtubule damage. The key regulator of this prometaphase checkpoint – Chfr (Checkpoint with FHA
and RING domains) – is one of the most frequently inactivated mitotic genes in human cancer, mainly
via an epigenetic pathway involving promoter methylation and suggesting a role as a putative tumor
suppressor. The direct target of the ubiquitin-ligase Chfr is Polo-like kinase 1 (Plk1), one of the master
regulators of cell division, which also shows a deregulated expression pattern in a variety of tumors.
To further investigate the in vivo roles of the CHFR and Plk1 in mammalian cell division, we are
generating conditional knockout mouse models for both Plk1 and Chfr, as well as a gain-of-function
knock-in model for Plk1.
42
Workshop Modelos Animales en Cáncer
43
Workshop Animal Models for Cancer
RAÚL MÉNDEZ
[email protected]
Xenopus oocytes as a model to study translational control of cell cycle
Raúl Méndez
Centre de Regulació Genòmica, Barcelona
Fully-grown oocytes are arrested at Prophase-I until progesterone induces resumption of meiosis.
The expression of new gene products required for the orderly progression through cell cycle takes
place in the absence of transcription and is driven by a complex network of translational regulation of
stored maternal mRNAs. These mRNAs encode for proteins that regulate chromosome segregation
and M-Phase Checkpoints, including several proto-oncogene. Therefore, the Xenopus oocyte
constitutes an ideal system to study potential mRNAs targets whose translation is de-regulated during
cell transformation. Mos, cyclin B1, and several other dormant mRNAs in oocytes contain short poly(A)
tails (~20-40 nts), and it is only when these tails are elongated (to ~150 nts) that translation takes
place. Cytoplasmic polyadenylation requires two elements in the 3’-UTR, the hexanucleotide
AAUAAA, which is also necessary for nuclear pre-mRNA cleavage and polyadenylation, and the
nearby cytoplasmic polyadenylation element (CPE). The CPE is bound by CPEB, a highly conserved
zinc finger and RRM type RNA-binding protein. The CPE is not only necessary for cytoplasmic
polyadenylation-induced translation in maturing oocytes, it also mediates translational repression
(masking) in unstimulated oocytes. This event is mediated by Maskin, a protein that interacts with
CPEB as well as the cap binding protein eIF-4E. The detailed analysis of the cis-acting elements
present in the cyclin B family of mRNAs has allowed us to propose a global model of CPE-mediated
translational regulation that can be extrapolated to explain the differential translational control of all
known cytoplasmically polyadenylated mRNAs and even to predict the translational regulation of
mRNAs with putative CPEs. This model is based in a combinatorial distribution of three cis-acting
elements (i.e., NRE, CPE and Hexanucleotide), which recruit three trans-acting factors (i.e., Pumilio,
CPEB and CPSF). The number, relative position and exact sequence of these elements determine the
specific time and amount of polyadenylation, as well as the active repression of the mRNA, allowing
for a very accurate control of gene expression. This approach combined with a functional screening for
cytoplasmically polyadenylated mRNAs has allowed us to identify new CPE-regulated mRNAs that
encode for factors controlling chromosome segregation and M-phase exit.
44
Workshop Modelos Animales en Cáncer
45
Workshop Animal Models for Cancer
OLGA MILLÁN
[email protected]
Imagen molecular in vivo: abordajes multimodales para el seguimiento de
tumores
Olga Millán
Instituto de Alta Tecnología, PRBB, Barcelona.
La imagen molecular es una nueva disciplina en biomedicina que consiste en la representación visual,
caracterización y cuantificación de los procesos biológicos que ocurren a nivel celular en un
organismo vivo. Las imágenes que se obtienen reflejan mecanismos moleculares y celulares que
ocurren en un entorno fisiológico auténtico. La aparición de la imagen molecular se debe al avance de
la biología molecular y celular, al uso de animales transgénicos, a la creación de drogas y moléculas
altamente específicas, y al rápido desarrollo de instrumentación para la imagen animal.
Dentro de la imagen molecular existen distintas modalidades de detección que varían en función de
las propiedades físico-químicas de los trazadores: las tecnologías PET y SPECT, respectivamente,
reconstruyen las imágenes a partir de la emisión de positrones y de partículas gamma por parte del
sujeto de estudio; la tecnología CT obtiene imágenes tridimensionales a partir de disparos
secuenciales de Rayos X en un radio de 360º en torno al paciente; y los sistemas ópticos de imagen
in vivo detectan la emisión de bioluminiscencia y/o fluorescencia, generando imágenes
bidimensionales.
En oncología, las nuevas tecnologías de imagen no invasiva combinadas con el uso de genes
reportadores se han usado con éxito para el seguimiento de mecanismos de transducción de señales,
expresión génica y terapias celulares adoptivas. No obstante, cada combinación de técnica de
imagen y gen reportador tiene sus propias ventajas e inconvenientes. Los abordajes multimodales
permiten la combinación de diferentes técnicas de imagen durante el transcurso de un mismo estudio,
aprovechando las características y utilidades más óptimas de cada modalidad.
En este trabajo se describe la construcción de una herramienta que reúne tres genes reportadores –
GFP, Luciferasa y HSV-TK– y que una vez expresada de forma estable en las células tumorales,
posibilita su seguimiento por diversas técnicas de imagen. También se presentan ejemplos de su
funcionalidad tanto in vitro como in vivo, en un modelo experimental de cáncer de próstata.
46
Workshop Modelos Animales en Cáncer
47
Workshop Animal Models for Cancer
IGNACIO MORENO DE ALBORÁN
[email protected]
C-Myc regulates cell size and ploidy but is not essential for postnatal
proliferation in liver
Esther Baena1, Alberto Gandarillas2, Mireia Vallespinós1, Jennifer Zanet2, Oriol Bachs3, Clara
Redondo4, Isabel Fabregat5, Carlos Martinez-A1 and Ignacio Moreno de Alborán1
1
Department of Immunology and Oncology (DIO), Centro Nacional de Biotecnología/CSIC,
Universidad Autónoma de Madrid, Cantoblanco, Madrid E-2804, Spain
2
Institut Universitaire de Recherche Clinique. Laboratoire de Dermatologie Moléculaire UPRES
EA3754. F-34093, Montpellier, France
3
Departament de Biologia Cel.lular i Anatomia Patologica, Institut d'Investigacions Biomediques
August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, E-08036, Barcelona, Spain
4
Dept. Anatomía Patológica, Hospital Ramón y Cajal, Carretera de Colmenar Km 9, Madrid E-28034,
Spain
5
Departamento de Bioquímica y Biología Molecular, Instituto de Bioquímica, Centro Mixto CSIC/UCM,
Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
The c-Myc protein is a transcription factor implicated in the regulation of multiple biological processes
including cell proliferation, cell growth, apoptosis, and metabolism. In vivo overexpression of c-myc is
linked to tumor development in a number of mouse models. More recently, several studies have
addressed the role of dMyc in cell and organ growth in Drosophila3-5. Whether c-Myc plays a similar
role in vertebrates remains to be elucidated. Here we show that perinatal inactivation of c-Myc in liver
causes disorganized organ architecture, decreased hepatocyte size, and endoreplication.
Furthermore, c-Myc appears to have distinct roles in proliferation in liver. Thus, postnatal hepatocyte
proliferation does not require c-Myc, whereas it is necessary for liver regeneration in adult mice.
Interestingly, free radicals content is augmented and apoptosis is increased in the liver. These results
show novel physiological functions of c-myc in liver development and hepatocyte proliferation and
growth.
48
Workshop Modelos Animales en Cáncer
49
Workshop Animal Models for Cancer
PURA MUÑOZ-CÁNOVES
pura.muñ[email protected]
Sequential phosphorylation of p53 by ATM and ATR kinases in response to
MNNG-induced DNA damage: activation of PAI-1 gene expression by MNNG
Berta Vidal, Maribel Parra, Mercè Jardí & Pura Muñoz-Cánoves
Centre de Regulació Gen`mica (CRG), Barcelona-Spain
The alkylating agent MNNG is an environmental carcinogen that causes DNA lesions leading to cell
death. We previously demonstrated that MNNG induced the transcriptional activity of the plasminogen
activator inhibitor-1 (PAI-1) gene in a p53-dependent manner. However, the mechanism(s) linking
external MNNG stimulation and PAI-1 gene induction remained to be elucidated. Here, we show that
ATM and ATR kinases, but not DNA-PK, which participate in DNA damage-activated checkpoints,
regulate the phosphorylation of p53 at serine 15 in response to MNNG cell treatment. Using ATMdeficient cells, ATM was shown to be required for early phosphorylation of serine 15 in response to
MNNG, whereas catalytically inactive ATR selectively interfered with late phase serine 15
phosphorylation. In contrast, DNA-PK-deficient cells showed no change in the MNNG-induced serine
15 phosphorylation pattern. In agreement with this, sequential activation of ATM and ATR kinases was
also required for adequate induction of the endogenous PAI-1 gene by MNNG. Finally, we showed
that cells derived from PAI-1-deficient mice were more resistant to MNNG-induced cell death than
normal cells, suggesting that p53-dependent PAI-1 expression partially mediated this effect. Since
PAI-1 is involved in the control of tumor invasiveness, our finding that MNNG induces PAI-1 gene
expression via ATM/ATR-mediated phosphorylation of p53 sheds new insight on the role of these
DNA damage-induced cell cycle checkpoint kinases.
50
Workshop Modelos Animales en Cáncer
51
Workshop Animal Models for Cancer
ÁNGEL R. NEBREDA
[email protected]
Signal transduction and cell cycle regulation
Ángel R. Nebreda
Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid
Xenopus oocytes are cells naturally arrested at the G2/M border of the first meiotic division that can
enter into M-phase of meiosis upon progesterone stimulation. This process of meiotic maturation
involves a number of changes in the oocyte including the dissolution of the nuclear membrane,
chromosome condensation and formation of the metaphase spindle. Protein phosphorylation plays a
major role in the meiotic maturation of oocytes and many signalling pathways activated during this
process are also involved in somatic cell proliferation and differentiation. The process of maturation is
independent of transcription, but requires translation of specific maternal mRNAs stored in the oocyte.
The final steps in oocyte maturation involve the activation of maturation-promoting factor (MPF), a
complex of cyclin B and the Cdk1 protein kinase that triggers entry into M-phase of the cell cycle (both
in mitosis and meiosis) in all eukaryotic cells. We are interested in how signalling pathways regulate
the cell cycle machinery that controls the G2/M transition and M phase progression. Our work focuses
on the regulation of the Cdc25C phosphatase and the Wee1/Myt1 protein kinases, which directly
control the phosphorylation and activation of Cdk1. We are investigating the interplay between MAP
kinase pathways, which stimulate G2/M progression, and the cAMP-dependent protein kinase (PKA)
that is critical to maintain the G2 arrest. We are also using the Xenopus oocyte system to identify new
cell cycle regulators.
52
Workshop Modelos Animales en Cáncer
53
Workshop Animal Models for Cancer
PALOMA ORDOÑEZ-MORÁN
[email protected]
1alpha,25-Dihydroxyvitamin D3 have profound effects on the gene expression
profile, differentiation and proliferation of human colon cancer cells in vitro
and in vivo
Ordóñez-Morán, P.; Larriba, M. J.; Pálmer, H. G.; González-Sancho, J. M. & Muñoz, A.
Instituto de Investigaciones Biomédicas, Madrid
Epidemiological and preclinical data indicate that vitamin D3 and its most active metabolite 1alpha,25dihydroxyvitamin D3 (1alpha,25(OH)2D3) have anticancer activity. Accordingly, clinical trials are
underway using non-hypercalcemic 1alpha,25(OH)2D3 analogs (EB1089, MC903,…) against various
neoplasms including colon cancer. These compounds inhibit the proliferation and promote the
differentiation of human colon cancer SW480-ADH cells. Their pro-differentiation effects are linked to
the induction of the expression of E-cadherin and other adhesion proteins. In addition,
1alpha,25(OH)2D3 promotes the translocation of beta-catenin from the nucleus to the plasma
membrane, leading to beta–catenin-TCF-4 transcriptional activity inhibition (J. Cell Biol., 154, 369-388,
2001). We have investigated also the gene expression profiles associated with 1alpha,25(OH)2D3
treatment of SW480-ADH cells using oligonucleotide microarrays. 1alpha,25(OH)2D3 changed the
expression levels of numerous genes involved in transcription, cell adhesion, DNA synthesis,
apoptosis and intracellular signaling (Cancer Res., 63, 7799-7806, 2003). We performed an in vivo
study in which severe immune-deficient scid mice were injected subcutaneously with SW480-ADH
cells. Half the animals were treated with EB1089 and the other half with placebo. In agreement with
the results obtained in cultured cells, tumour growth was inhibited by EB1089 (30%). Presently, we are
analizing the effect of EB1089 on the expression of some 1alpha,25(OH)2D3-target genes in the
xenografted tumors. In addition, we are studying these genes in the colon of VDR(-/-) mice, donated
by Dr. Marie Demay (Massachusetts General Hospital, Boston). Our results contribute to understand
the effect of 1alpha,25(OH)2D3 action in colon cancer and explain its effects on cell proliferation and
phenotype, supporting the therapeutic and prevention role of the non-hypercalcemic derivatives of
1alpha,25(OH)2D3 in colon cancer.
54
Workshop Modelos Animales en Cáncer
55
Workshop Animal Models for Cancer
SAGRARIO ORTEGA
[email protected]
Developing tools to study tumor angiogenesis in the mouse
Javier Martín, Inés Martínez, Jaime Muñoz, Marta Riffo, Carmen Gómez & Sagrario Ortega
Biotechnology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid
One of the interests of our lab is to generate tools for the study of cancer in vivo using the mouse as a
genetic model. In the past few years, conditional gene targeting in murine embryonic stem (ES) cells
has proven to be extremely valuable to reproduce in the mouse the same genetic lessions associated
with cancer in humans, and therefore to create genetic models of this disease. Moreover, this
technology has also been used to express a reporter protein under the control of the endogenous
regulatory sequences of a gene of choice, for the purpose of monitoring its expression, and as a
consequence, monitoring a biological process associated with it. We are combining both approaches
to study tumor angiogenesis in vivo using the mouse as a model system. It is well documented that
neovascularization plays a role in the growth, invasion and metastatic spread of solid tumors, and
antiangiogenic drugs can potentially be used as anticancer therapies. We have chosen genes that are
expressed especifically in endothelial cells to co-express fluorescent/bioluminescent proteins using a
gene targeting strategy to create bicistronic mRNAs. These knockin reporter lines are then crossed
with gene targeted mice that are predisposed to develop solid tumors, in order to monitor the
angiogenesis associated to the growth and expansion of these tumors in vivo and their response to
anti-angiogenic drugs. We are also generating knockin lines to induce mutations (gene activation or
inactivation) specifically in endothelial cells by expressing a CreERT2 fusion protein under the control
of endogenous regulatory sequences of endothelial cell specific genes, and study the efect of these
mutations in tumor angiogenesis and growth.
56
Workshop Modelos Animales en Cáncer
57
Workshop Animal Models for Cancer
HECTOR PEINADO
[email protected]
A key role for ß-catenin in mouse skin carcinogenesis
Héctor Peinado, Joerg Huelsken, Walter Birchmeier & Amparo Cano
Instituto de Investigaciones Biomédicas, Madrid
ß-catenin plays a key role in vertebrates in cadherin-mediated cell adhesion and is also implicated in
diverse signaling pathways both in development and in adult tissues (1). Multiple reports have shed
light into the mechanisms of ß-catenin regulation and function and have illustrated that this protein is a
central player in Wnt signaling pathway (2). Importantly, deregulation of the Wnt signaling and/or the
loss of cell-cell adhesion have been involved during tumour progression. In consequence, alterations
in adhesion and migration are characteristics of tumour cells that ignore normal regulatory signals from
their environment (3). In mouse epidermis stabilized ß-catenin overexpression has been related to
tumour formation (4), indicating the importance of ßcatenin control during epidermal keratynocyte
differentiation. To get further insights into the implication of ß-catenin in tumorigenesis we applied twostage carcinogenesis protocol knockout mice bearing conditional mutation of the ß-catenin gene in the
epidermis and hair follicles of the mouse using keratin14-driven Cre/loxP technology (5). We have
shown that ß-catenin deletion in stem epidermis cells completely blocks tumour formation. Moreover,
ß-catenin signalling pathway is active in papillomas formed in control mice, indicating a putative
collaboration between H-ras mutation and ß-catenin in mouse epidermis tumour progression. All this
data, suggest a key role ß-catenin in mouse epithelial carcinogenesis although further studies must be
done to understand the molecular mechanisms involved.
1. Nelson, W. J., R. Nusse, Science 303, 1483 (2004).
2. Huelsken, J., W. Birchmeier, Curr. Opin. Genet. Dev. 11, 547 (2001).
3. Polakis, P., Curr. Opin. Genet. Dev. 9, 15 (1999).
4. Gat, U. et al., Cell 95, 605 (1998).
5. Huelsken, J. et al., Cell 105, 533 (2001).
58
Workshop Modelos Animales en Cáncer
59
Workshop Animal Models for Cancer
MARÍA PÉREZ CARO
[email protected]
Snail overexpression in development and cancer
Manuel Sánchez-Martín 1,5, Pedro Antonio Pérez-Mancera1, María Pérez-Caro1, Inés GonzálezHerrero1, Teresa Flores2, Alberto Orfao3, Alfonso Gutiérrez-Adán4, Belén Pintado4, and Isidro
Sánchez-García1
1
Laboratorio 13, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC/ Universidad de
Salamanca, Campus Unamuno, 37007 Salamanca ,
2
Servicio de Anatomía Patológica, Universidad de Salamanca
3
Servicio de Citometría, Universidad de Salamanca,
4
Area de Reproducción Animal, Centro de Investigación y Tecnología, Ctra de la Coruña km 5.9,
28040-Madrid
5
Departamento de Medicina, Universidad de Salamanca
The Snail zinc-finger transcription factor triggers epithelial-mesenchymal transitions (EMTs) during
embryonic development and cancer progression(1-4). Indeed, Snail mutant mice die at gastrulation
due to a defective EMT and maintained E-cadherin expression(4). However, relatively little is known
about the consequences of Snail overexpression in malignancy. To investigate the potential role of
Snail overexpression in development and in cancer, we generated mice carrying a tetracyclinerepressible Snail transgene. These mice show morphological alterations and develop both epithelial
and mesenchymal tumours (leukaemia and sarcomas) in almost all cases examined. Suppression of
the Snail transgene did not rescue the malignant phenotype. Overall, the findings demonstrate a
specific and critical role for Snail in the pathogenesis of cancer.
1. Cano, A., et al. The transcription factor Snail controls epithelial-mesenchymal transitions by
repressing E-cadherin expression. Nature Cell Biol. 2, 76-83, 2000.
2. Batlle, E., et al The transition factor Snail is a repressor of E-cadherin gene expression in epithelial
tumour cells. Nature Cell Biol. 2, 84-89, 2000.
3. Carver EA, et al._The mouse snail gene encodes a key regulator of the epithelial-mesenchymal
transition. Mol Cell Biol. 2001
4. Palmer, H. et al The transcription factor SNAIL represses vitamin D receptor expression and
responsiveness in human colon cancer. Nature Med. 2004
60
Workshop Modelos Animales en Cáncer
61
Workshop Animal Models for Cancer
IGNACIO PÉREZ DE CASTRO
[email protected]
Target validation in vivo of mitotic regulators in cancer
Ignacio Pérez de Castro & Marcos Malumbres
Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid
During mitosis, correct chromosome segregation is an essential process which deregulation has
recently been associated with cancer. We have started an in vivo approach to analyze the therapeutic
potential in cancer treatment of some mitotic regulators such as Aurora kinases. These molecules are
frequently overexpressed in a variety of human tumors and, more importantly, their deregulation
seems to provoke mitotic catastrophe and apoptosis in vitro. In fact, that is the mechanism used by
many of the current drugs such as paclitaxel. One of our goals will include the development of mouse
models for the inactivation of the Aurora-A kinases by generating a conditional knock out for each one
of the three Aurora genes. Our second objective consists on the generation of a knock in mouse that
will express a non-degradable form of these proteins, and therefore resistant to its proteolytic
degradation in mitosis. These new models are being generated using a modification of the standard
conditional gene-targeting strategies. In both knock out and knock in models, expression of the
modified allele will be detected in vitro and in vivo by the concomitant expression of a color marker
through a bicistronic RNA. Conditional knock out models will express the lacZ gene instead of the
targeted exon using Cre-mediated inversion (in collaboration with N.B. Ghyselinck and P. Chambon,
Strasbourg). Similarly, knock in models will express the lacZ marker using an IRES sequence inserted
in the 3'-UTR of the modify allele. These two modifications will allow us to label knock out and knock in
cells after conditional inactivation or activation of the targeted gene; an essential tool to analyze in vivo
the role of these alterations in cancer development. The information derived from this work will be
crucial for a better knowledge of the function of Aurora kinases and their role in tumor progression. In
addition, both mouse models for loss-of-function and gain-of-function will be a valuable tool to improve
current therapeutic strategies in cancer, frequently directed against mitotic progression.
62
Workshop Modelos Animales en Cáncer
63
Workshop Animal Models for Cancer
ISIDRO SÁNCHEZ-GARCÍA
[email protected]
Of man in mouse: modelling human cancer genotype-phenotype correlations in
mice
Isidro Sánchez-García
Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC/ Universidad de Salamanca,
Salamanca
To date many genetic changes have been described and reported in the cancer process. Since the
first mutations were described, several attempts to establish genotype-phenotype correlations for
these genetic alterations have been reported. Moreover, in vitro data have suggested effects of mutant
proteins in proliferation. Genotype-phenotype correlations are not only important for predicting the
clinical course of the disease and to allow tailor-made surveillance of individuals at risk, but also have
implications for the elucidation of the molecular genetic mechanisms underlying genesis of cancer and
the development of gene-based therapies. Here, we discuss genotype-phenotype correlation of
cancer in mouse and man, and the functional aspects that may account for these observations
important to both understand and treat the human disease process.
64
Workshop Modelos Animales en Cáncer
65
Workshop Animal Models for Cancer
MARÍA SÁNCHEZ-MARTÍN
[email protected]
Análisis del inicio y progresión de la leucemia mediante la expresión
condicional del gen BCR-ABL en ratones
1
1
*, Manuel Sánchez-Martín2, Teresa Flores3, Alberto Orfao4,
Gutierrez-Cianca
María Pérez-Caro *, Noelia
5
5
1
Alfonso Gutiérrez-Adán , Belén Pintado & Isidro Sánchez-García
1
Laboratorio 13, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC/ Universidad de
Salamanca,
Campus Unamuno, 37007-SALAMANCA (SPAIN).
2
Departamento de Medicina, Universidad de Salamanca
3 Servicio de Anatomía Patológica, Universidad de Salamanca
4 Servicio de Citometría, Universidad de Salamanca.
5
Area de Reproducción Animal, Centro de Investigación y Tecnología, Ctra de la Coruña km 5.9, 28040Madrid.
La consecuencia más frecuente de las traslocaciones cromosómicas en el cáncer humano es la
fusión génica. La traslocación t(9;22)(q34;q11) puede dar lugar a la proteína BCR-ABLp190 (p190)
que se asocia a LLA-B. Los modelos de ratón clásicos han demostrado la capacidad tumorogénica de
estos genes de fusión pero no han permitido estudiar cuestiones de gran relevancia en el cáncer
humano, debido a que no permiten modular la expresión génica, como por ejemplo, el papel de estos
genes de fusión en el inicio y el mantenimiento del tumor o la influencia de la cantidad de producto de
fusión en el desarrollo tumoral. Por esta razón, hemos desarrollado un sistema de regulación de la
expresión génica basado en el operón de resistencia a tetraciclina de E.coli que reúne en un única
unidad transcripcional todos los elementos necesarios para modular la expresión del gen de fusión
p190. Este sistema nos ha permitido desarrollar un modelo de ratón fisiológicamente relevante
(CombitTAp190), que expresan el gen de fusión de manera dependiente de la adición de doxiciclina
en el agua de bebida. Utilizando este modelo hemos podido responder cuestiones de enorme
transcendencia para el entendimiento del cáncer y su tratamiento: i) la expresión del gen de fusión
durante el desarrollo embrionario es capaz de iniciar la leucemia; ii) una vez iniciado el tumor, el
mantenimiento del mismo es independiente del p190 ya que impone a la células un destino tumoral,
cuestionando su utilización como dianas terapéuticas.
Castellanos A, et al. A BCR-ABL(p190) fusion gene made by homologous recombination causes Bcell acute lymphoblastic leukemias in chimeric mice with independence of the endogenous bcr
product. Blood. 1997
Huettner CS, et al Reversibility of acute B-cell leukaemia induced by BCR-ABL1.Nat Genet. 2000 Jan
66
Workshop Modelos Animales en Cáncer
67
Workshop Animal Models for Cancer
MANUEL SÁNCHEZ-MARTÍN
[email protected]
Slug in cancer development
Pedro Antonio Pérez-Mancera1*, Inés González-Herrero1*, María Pérez-Caro1, Noelia GutiérrezCianca1, Teresa Flores2, Alfonso Gutiérrez-Adán3, Belén Pintado3, Manuel Sánchez-Martín 1,4 and
Isidro Sánchez-García1
1
Laboratorio 13, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC/ Universidad de
Salamanca, Campus Unamuno, 37007-SALAMANCA (SPAIN).
2
Servicio de Anatomía Patológica, Universidad de Salamanca.
3
Area de Reproducción Animal, Centro de Investigación y Tecnología, Ctra de la Coruña km 5.9,
28040-Madrid.
4
Departamento de Medicina, Universidad de Salamanca
The SNAIL-related zinc-finger transcription factor, SLUG (SNAI2), is critical for the normal
development of neural crest-derived cells and loss of-function SLUG mutations have been proven to
contribute to piebaldism and Waardenburg syndrome type 2 in a dose-dependent fashion(1-5). While
aberrant induction of SLUG has been documented in cancer cells, relatively little is known about the
consequences of SLUG overexpression in malignancy(6). To investigate the potential role of SLUG
overexpression in development and in cancer, we generated mice carrying a tetracycline-repressible
Slug transgene. These mice were morphologically normal at birth, and developed mesenchymal
tumours (leukaemia and sarcomas) in almost all cases examined. Suppression of the Slug transgene
did not rescue the malignant phenotype. Furthermore, the BCR-ABL oncogene, which induces Slug
expression in leukaemic cells, did not induce leukaemia in Slug-deficient mice, implicating Slug in
BCR-ABL leukaemogenesis in vivo. Overall, the findings indicate that while Slug overexpression is not
sufficient to cause overt morphogenetic defects in mice, they demonstrate a specific and critical role
for Slug in the pathogenesis of mesenchymal tumours.
1. Nieto M.A., et al. Control of cell behavior during vertebrate development by Slug, a zinc finger gene.
Science (1994).
2. Sefton M., et al. Conserved and divergent roles for members of the Snail family of transcription
factors in the chick and mouse embryo. Development (1998).
3. Nieto, M.A. The Snail superfamily of zinc finger transcription factors. Nat. Rev. Mol. Cell. Biol.
(2002).
4. Sanchez-Martin M., et al. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol
Genet. (2002).
5. Sanchez-Martin M et al. Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am-JMed-Genet. (2003).
68
Workshop Modelos Animales en Cáncer
69
Workshop Animal Models for Cancer
MIRENTXU SANTOS
[email protected]
Tumorigénesis epitelial y alteraciones en el desarrollo producidas por una
forma activa de Akt
Mirentxu Santos, Carmen Segrelles, Sergio Ruiz, Mª Fernanda Lara & Jesús M. Paramio
Biología Molecular Celular, CIEMAT. Madrid
La vía de señalización de PI3K/Pten/Akt tiene un papel preponderante en el cáncer, ya que su
activación aumenta la proliferación y disminuye la apoptosis, convirtiéndose así en un atractivo blanco
de intervención terapéutica. Sin embargo, se necesitan modelos animales para validar este aspecto.
Nuestros datos demostraron que Akt desempeña un papel fundamental en la transducción de señales
en la carcinogénesis de piel de ratón (Oncogene 21, 53-56, 2002), y la implicación de Akt en la
angiogénesis tumoral (Carcinogénesis 25 1137-1147, 2004). Nuevos datos revelan que Akt
transforma las células epiteliales por mecanismos específicos transcripcionales y post-traduccionales.
Para conocer las funciones de Akt in vivo hemos generado un modelo transgénico en el que una
forma permanentemente activa de Akt (myrAkt) se expresa en la capa basal de epitelios estratificados
(K5myrAkt). En los animales obtenidos los niveles de expresión del transgén son de 0, 5 a 1 veces los
niveles de Akt endógenos, y la actividad quinasa de 3 a 7 veces mayor. Se han observado además de
alteraciones en el desarrollo del pelo, uñas y dientes, la aparición esporádica de tumores epidérmicos
y de otros tejidos de origen epitelial. Con una penetrancia casi total, desarrollan lesiones en el epitelio
oral (labios, paladar, lengua y mucosa oral) que desembocan en la malignización y aparición de
carcinomas. Estos datos sugieren que Akt juega un papel en la tumorigénesis epitelial y en el
desarrollo de derivados ectodérmicos. Los animales K5myrAkt pueden representar un modelo
informativo para el conocimiento del proceso tumorigénico en la cavidad oral, pudiéndose emplear en
el futuro como método de análisis preclínico para drogas o ensayos experimentales.
70
Workshop Modelos Animales en Cáncer
71
Workshop Animal Models for Cancer
JORDI SURRALLÉS
[email protected]
Linking chromatin and chromosome fragility: involvement of histone H2AX in
the Fanconi anemia/BRCA tumour supressor pathway
Jordi Surrallés
Universidad Autónoma de Barcelona, Barcelona
Fanconi anemia (FA) is a rare genetic disease characterized by chromosome fragility, bone marrow
failure, congenital abnormalities and high predisposition to cancer. To get further insights into the
molecular biology of FA, here we studied the dynamics and genetic regulation of FANCD2 relocation
to DNA damage in nuclei locally exposed to ultraviolet radiation (UVR). Here we show that UVR
induces FANCD2 phosphorylation and monoubiquitination in a timing consistent with the dynamics of
its relocation to the site of damage. This FANCD2 relocation strictly depends on FANCA, FANCD2
K561, BRCA1 and ATR but is independent of ATM, suggesting that the whole FA/BRCA pathway is
activated in response to UVR. Interestingly, FANCD2 relocation to the UVR-induced damage requires
one of the ATR kinase substrate, the histone variant H2AX, as shown in H2AX-/- MEFs, although
H2AX is not required for FANCD2 activation. Thus, both posttranslational modifications of FANCD2
are necessary but not sufficient for FANCD2 functioning at the site of DNA damage. In addition, the
dynamics of H2AX phosphorylation at the site of damage is identical to the dynamics of FANCD2
relocation to the same site and H2AX-/- MEFs show an excess of chromatid-type chromosomal
aberrations after treatment with DNA cross-linkers. All these observations suggest an involvement of
histone H2AX in the FA/BRCA pathway downstream FANCD2 activation and therefore provide
evidence for a novel link between chromatin structure and chromosome stability in tumor suppression.
Our observations are consistent with the notion that histone H2AX could be the organizer of a network
of tumour suppression pathways (Surralles et al., 2004).
Surrallés J, Jackson SP, Jasin M, Kastan MB, West SC and Joenje H (2004) Molecular cross talk
among chromosome fragility syndromes. Genes Dev. 18, 1359-1370.
72
Workshop Modelos Animales en Cáncer
73
Workshop Animal Models for Cancer
JELENA UROSEVIC
[email protected]
Generation of a B-Raf conditional knock-in mouse tumor model
Jelena Urosevic & Mariano Barbacid
Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid,
Spain
The Raf serine/threonine kinases (B-Raf, c-Raf and A-Raf) are thought to a play key role in the
conserved Ras/Raf/MEK/ERK signal transduction pathway integrating the mitogenic signals of Ras
proteins into the ERK kinases, the key effectors of this pathway. In normal cells, Ras proteins activate
B-Raf by binding to its Ras binding domain which in turn activates its kinase activity. Recently it has
been shown that B-Raf is mutated in 66% of human malignant melanomas and in 15% of human
colorectal cancers. The most common mutation (80%), V599E replaces a valine residue located within
the kinase domain, by a glutamic acid. As a result, B-raf is thought to be constitutively activated, thus
sending mitogenic signals to the ERK pathway regardless of any upstream signalling. We have
decided to develop a conditional knock-in mouse model for the V599E mutation in order to study the
role of B-raf in tumor development. To generate this mouse model we have been constructed two
targeting vectors. One of them targets the B-Raf allele in mouse embryonic stem cells by replacing the
normal exon 16 by sequences carrying the oncogenic V599E mutation. Expression of this oncogenic
allele will be controlled by a floxed (loxP sites) STOP cassette inserted within intron 15. The mutated
exon has also been flanked with Frt sites to allow the possibility to knock out this oncogenic allele
once the tumor has developed by expressing the Flp recombinase. This strategy will allow us to study
tumor dependence on B-Raf expression during different steps of tumor development. Finally, to
monitor the expression of the oncogenic allele by a colour marker, a second targeting vector has been
used to incorporate an IRES-beta-geo cassette between the translational stop codon and the polyA
signal, a strategy that has been previouisly used in our laboratory to successfully express a conditional
K-ras oncogene (Guerra et al., Cancer Cell, 4, 111-120, 2003).
74
Workshop Modelos Animales en Cáncer
75
Workshop Animal Models for Cancer
MIREIA VALLESPINÓS
[email protected]
Identification of c-Myc target genes in vivo
Mireia Vallespinós, Esther Baena & Ignacio Moreno de Alborán
Departamento Inmunología y Oncología (Centro Nacional de Biotecnología), Madrid
The c-Myc protein is a transcription factor implicated in the regulation of multiple biological processes
including cell proliferation, cell growth, apoptosis, and metabolism. C-Myc binds to consensus
sequences (E-boxes) found on target genes and regulate the transcription of these genes. Functional
inactivation of c-Myc in the germline leads to embryonic lethality at day 9.5. To study cmyc function in
the bone marrow, we bred our previously described c-myc flox/flox conditional mouse with mx-cre
transgenic mouse (c-myc flox/flox; mx-cre+). These mice show a dramatic phenotype in bone marrow
characterized by abnormal hematopoiesis and death of myeloid and lymphoid lineages. We used
microarray technology to identify and characterize potential c-Myc target genes involved in the
regulation of hematopoiesis of c-myc flox/flox; mx-cre+ mice. Total RNA from bone marrow cells of cmyc flox/flox; mx-cre+ and control mice, was hybridized into microarrays that contained about 12,000
genes and ESTs. A total of 104 genes showed differential expression in c-myc flox/flox; mx-cre+ mice
compared to the expression in their control littermates. We are currently validating these results.
76
Workshop Modelos Animales en Cáncer
77
Workshop Animal Models for Cancer
ANXO VIDAL
[email protected]
La deficiencia de p27Kip1 desenmascara la función antioncogénica de p130 y
p107
Gloria Martínez1, Nancy Yeh2, David Shaffer2, Lawrence Frohman3, Andrew Koff2 & Anxo Vidal1,2
1
Dept. Fisioloxía, Univ. Santiago de Compostela, Santiago de Compostela
Dept. Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York
3
Section of Endocrinology, University of Illinois, USA
2
En el presente trabajo examinamos genéticamente la redundancia funcional entre el inhibidor de
CDK, p27Kip1, y los miembros de la familia de retinoblastoma, p130Rb2 y p107. Para ello generamos y
caracterizamos cepas de ratones con combinaciones de mutaciones para estos loci.
La ausencia de p130 aceleró la aparición y aumentó la frecuencia de adenomas hipofisarios y
feocromocitomas característicos de la cepa p27(-/-). Este fenotipo se asoció con un aumento del
índice proliferativo, lo que sugiere que p27 y p130 cooperan inhibiendo la proliferación, al menos en
estos dos órganos. Significativamente, los ratones del genotipo p107(+/-);p130(-/-);p27(-/-)
presentaron supervivencia reducida, con una elevada incidencia de neoplasias. Más aún, la
heterozigosidad de p107 aceleró el desarrollo de los tumores hipofisarios, además de observarse un
mayor espectro tumoral. E stos resultados ponen de manifiesto la función supresora de tumores de
p130 y p107 in vivo, y sugieren un papel parcialmente redundante de estos inhibidores del ciclo
celular en la prevención del desarrollo tumoral de diversos órganos.
Trabajo financiado por Ministerio de Ciencia y Tecnología, Xunta de Galicia y Cultek S.L.
78
Workshop Modelos Animales en Cáncer
79
Workshop Animal Models for Cancer
JOANA VISA
[email protected]
A standarized protocol applied in the animal facility (SE-IRO) for humane
endpoints in mouse models for cancer research
J. Visa, M. González & D. Solanes
Servei d’Estabulari. Institut de Recerca Oncológica, Hospital Duran y Reynals
The incidence of cancer in the world is projected to continue to increase. According to the World
Health Organization, cancer causes 6 million deaths every year which represents 12% of worldwide
deaths. In the research field, laboratory animals have been extensively used as experimental models
to increase our understanding about the causes of cancer and to develop improved treatments (10%
of all mice used for research purposes are related to oncological research). When these studies
involve the intentional induction of cancer in the animal model, the potential for the animal to
experience discomfort or distress exists, and thus, it justifies a special consideration from people
responsible of their use and welfare. The heterogeneity of scientific objectives and experimental tumor
models used in our Cancer Research Institute and the compliance with regional and European
regulations, has risen the need to design a protocol to monitor the animals. The protocol has to be
useful for all the experimental procedures, regardless of their nature, and has to be approved by the
Animal Experimental Commission from the Generalitat de Catalunya. To establish appropriate
management systems to monitor animals for the onset of tumor-associated disease we assess for
paraneoplastic conditions (such as cachexia) and tumor development (such as tumor distension,
ulceration, size). According to the ILAR Guidelines, we have developed a standardized protocol to
monitor the animals which has led to a marked refinement of humane endpoints. This presentation will
address some of the main issues associated with developing scoring systems and protocols to monitor
the animals used in cancer research.
80
Workshop Modelos Animales en Cáncer
81
Workshop Animal Models for Cancer
ANA M. ZUBIAGA
[email protected]
Dissecting the unique and shared functions of E2F transcription factors
Iglesias, A.; Infante, A.; García-Aranaga, I.; Laresgoiti, U.; Fullaondo, A.; Bernales, I.; Vicario, A. &
Zubiaga, A.M.
Dept. Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country,
Bilbao, Spain
The significance of the Rb/E2F pathway in the control of cell proliferation is illustrated by the finding
that the genes that control E2F activity are perturbed in the majority of human cancers. E2F
transcription factors heterodimerize with DP proteins to form a DNA-binding transcriptional activator,
and regulate the expression of genes involved in DNA replication and cell cycle control. Although
much has been learned about the biological properties of the E2F transcription factors, the precise
roles of each individual member, as well as the level of redundancy among them, need to be resolved.
Our analyses with mouse strains carrying targeted mutations for E2F1 and E2F2 have demonstrated
that these genes perform specific as well as overlapping biological functions, implying that each E2F
regulates a distinct set of target genes. E2F1(-/-) mice display defective thymocyte apoptosis,
increased tumor susceptibility, testicular atrophy and exocrine gland dysplasia. E2F2(-/-) mice exhibit
increased proliferation of hematopoietic cells and frequently develop autoimmunity and tumors.
E2F1/E2F2 compound-mutant mice develop non-autoimmune diabetes and exocrine pancreatic
dysfunction, suggesting that E2F1 and E2F2 share a role in normal pancreatic function. To identify
gene expression profiles that characterize the biochemical pathways regulated by each E2F member,
we are carrying out genomic as well as proteomic analyses of gene expression, employing DNA
microarray technology and mass spectrometry. As a complementary approach to these global studies,
we are performing chromatin immunoprecipitation assays and promoter analyses of E2F-responsive
genes, which allows us to examine the binding of each E2F to their target promoters, as well as the
transcriptional activity of these promoters under several physiological conditions.
82
Workshop Modelos Animales en Cáncer
83
Workshop Animal Models for Cancer
84
Workshop Modelos Animales en Cáncer
Workshop
Modelos
Animales
en Cáncer
Lista de Participantes
List of Participants
22-23 Octubre/October 2004
Institut Municipal d’Investigació Mèdica (IMIM), Barcelona
85
Workshop Animal Models for Cancer
86
Workshop Modelos Animales en Cáncer
Ibane Abasolo
Unitat de Biologia Cel·lular i Molecular, IMIM,
Barcelona
[email protected]
Maurici Brunet
Unitat de Biologia Cel·lular i Molecular, IMIM,
Barcelona
[email protected]
Jaume Adan
LBI, Merck, Farma y Quimica,S.A.
Barcelona
[email protected]
Dirk Buscher
Genetrix S.L., Madrid
[email protected]
Maria Luisa Campos
Unitat de Biologia Cel·lular i Molecular, IMIM,
Barcelona
[email protected]
Andrea Anfosso
Unitat de Biologia Cel·lular i Molecular, IMIM,
Barcelona
[email protected]
Carmen Carneiro
Dept. de Fisioloxia, Universidad de Santiago
de Compostela, Santiago de Compostela
[email protected]
José Aramburu
Universitat Pompeu Fabra, Barcelona
[email protected]
Víctor M. Arce
Fisiología, Universidad de Santiago de
Compostela, Santiago de Compostela
[email protected]
Claudia Cases
LBI, Merck Farma y Quimica, Barcelona
[email protected]
Lydia Castro
Fisiología, Universidad de Santiago de
Compostela, Santiago de Compostela
[email protected]
Esther Baena Chaparro
411 Centro Nacional de Biotecnología (CNB)CSIC, Madrid
[email protected]
María Virtudes Céspedes
Lab. Investigació gastrointestinal, Hospital de
Sant Pau, Barcelona
[email protected]
Lucía Barrado
Cell Division and Cancer Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
Ester Civit
Unitat de Biologia Cel·lular i Molecular, IMIM,
Barcelona
[email protected]
Miguel Beato
Expresión Génica, Centre de Regulació
Genòmica, Barcelona
[email protected]
Indira Coronel
Grupo de Aplicaciones Biomédicas de la
RMN, Universidad Autónoma de Barcelona,
Barcelona
[email protected]
Marina Benito-Vicente
Biomolecules Structure, Instituto de
Investigaciones Biomédicas "Alberto Sols",
Madrid
[email protected]
Jose A. Costoya
Fisiología, Universidad de Santiago de
Compostela, Santiago de Compostela
[email protected]
Carmen Blanco-Aparicio
Grupo de Diseño de Ensayos, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
Natàlia Dave
IMIM, Universitat Pompeu Fabra, Barcelona
[email protected]
María A. Blasco
Telomerase and telomeres Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
Guillermo de Cárcer
Cell Division and Cancer Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
87
Workshop Animal Models for Cancer
Carme Gallego
Cell cycle, Universitat de Lleida, Lleida
[email protected]
Maxy Bernard De los Santos Delgado
Unidad de Regulación de la Expresión Génica
, UAM-CSIC
Madrid
[email protected]
Antonio García de Herreros
Unitat de Biologia Cel·lular i Molecular, IMIM,
Barcelona
[email protected]
Mireia Duñach
Dept. de Bioquímica i Biologia Molecular,
Universitat Autonoma de Barcelona, Bellaterra
(Barcelona)
[email protected]
Gabriel Gil-Gómez
Unitat de Biologia Cel·lular i Molecular, IMIM,
Barcelona
[email protected]
Laura España
LBI, Merck, Farma y Quimica S.A., Barcelona
[email protected]
Cayetano González
ICREA i IRBB, Parc Científic de Barcelona,
Barcelona
[email protected]
Lluis Espinosa
Regulacio Transcripcional, Institut Recerca
Oncologica, Barcelona
[email protected]
Carmen Guerra
Experimental Oncology Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
Myriam Fabre
In Vitro Cell Technologies, Barcelona
[email protected]
Vanessa Fernandez
Regulacio Transcripcional, Institut Recerca
Oncologica, Barcelona
[email protected]
Manuel Guzmán
Universidad Complutense de Madrid, Madrid
[email protected]
Luis A. Herráez Baranda
R&D department, ZF Biolabs, Tres Cantos
(Madrid)
[email protected]
Gonzalo Fernández-Miranda
Cell Division and Cancer Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
Michel Herranz
Epigenética del Cáncer, Centro Nacional de
Investigaciones Oncológicas (CNIO), Madrid
[email protected]
Cristina Fillat
Centre de Regulació Genòmica, Barcelona
[email protected]
Marta Herreros
Instituto Biomedicina, Universidad de Leon,
León
[email protected]
Clara Francí
Unitat de Biologia Cel·lular i Molecular, IMIM,
Barcelona
[email protected]
Pilar López-Larrubia
SIERMAC, Instituto de Investigaciones
Biomédicas "Alberto Sols", Madrid
[email protected]
Gardenia Fresneda
Cell Division and Cancer Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
Cristina López-Rodríguez
Centre de Regulació Genòmica, Barcelona
[email protected]
Javier Galán
Experimental Oncology Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
Marcos Malumbres
Cell Division and Cancer Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
88
Workshop Modelos Animales en Cáncer
Ramón Mangues Bafalluy
Lab. Investigació Gastrointestinal, Hospital de
Sant Pau, Barcelona
[email protected]
Ángel R. Nebreda
Cell Signalling and Cell Cycle Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
Alberto Martín
Experimental Oncology Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
M. Ángela Nieto
Instituto Cajal, Madrid
[email protected]
Alberto Martín-Pendás
Instituto Universitario de Oncología Principado
de Asturias, Oviedo
[email protected]
David Olmeda
1.13, Instituto de Investigaciones Biomédicas,
Madrid
[email protected]
Jorge Martinalbo
Cell Division and Cancer Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
Paloma Ordóñez-Morán
Endocrinología Molecular, Instituto de
Investigaciones Biomédicas, Madrid
[email protected]
Sagrario Ortega
Transgenic Unit, Centro Nacional de
Investigaciones Oncológicas (CNIO), Madrid
[email protected]
Isabel Martinez-Lacaci
Instituto de Biología Molecular y Celular,
Universidad Miguel Hernández, Elche
(Alicante)
[email protected]
Hector Peinado
1.13, Instituto de Investigaciones Biomédicas,
Madrid
[email protected]
Raúl Mendez
Centre de Regulació Genòmica, Barcelona
[email protected]
María Pérez-Caro
Instituto de Biología Molecular y Celular del
Cáncer (IBMCC), CSIC/ Universidad de
Salamanca, Salamanca
[email protected]
Anna Merlos
Cellular Biology, Universitat Pompeu Fabra,
Barcelona
[email protected]
Ignacio Pérez de Castro
Cell Division and Cancer Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
Ramon Messeguer
LBI, Merck, Farma y Quimica, S.A., Barcelona
[email protected]
Ignacio Moreno de Alborán
411 Centro Nacional de Biotecnologia-CSIC,
Madrid
[email protected]
José Antonio Pintor
Mol. Biol., IRNA.CSIC, Sevilla
[email protected]
Olga Millán
Instituto de Alta Tecnología, PRBB,
Barcelona.
[email protected]
Francisco X. Real
Unitat de Biologia Cel·lular i Molecular, IMIM,
Barcelona
[email protected]
Pura Muñoz-Cánoves
Differentiation, Centre de Regulació
Genòmica, Barcelona
[email protected]
Tiago Rodrigues
NMR Laboratory, Instituto Investigaciones
Biomédicas "Alberto Sols", Madrid
[email protected]
Pilar Navarro
Unitat de Biologia Cel·lular i Molecular, IMIM,
Barcelona
[email protected]
89
Workshop Animal Models for Cancer
Esther Rodríguez
Cell Division and Cancer Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
Gema Tarrason
LBI, Merck, Farma y Quimica, S.A., Barcelona
[email protected]
Jelena Urosevic
Experimental Oncology Group, Centro
Nacional de Investigaciones Oncológicas
(CNIO), Madrid
[email protected]
Ramon Roset
Unitat de Biologia Cel·lular i Molecular, IMIM,
Barcelona
[email protected]
Daniel Valverde Saubí
Grup d'Aplicacions Biomèdiques de la RMN,
Universitat Autònoma de Barcelona,
Cerdanyola del Vallès
[email protected]
Isidro Sánchez-García
Instituto de Biología Molecular y Celular del
Cáncer (IBMCC), CSIC/ Universidad de
Salamanca, Salamanca
[email protected]
Mireia Vallespinós
411, Centro Nacional de Biotecnología-CSIC,
Madrid
[email protected]
Manuel Sánchez-Martín
Instituto de Biología Molecular y Celular del
Cáncer (IBMCC), CSIC/ Universidad de
Salamanca, Salamanca
[email protected]
Anxo Vidal
Fisioloxia, Universidad de Santiago de
Compostela, Santiago de Compostela, A
Coruña
[email protected]
Mirentxu Santos Lafuente
Biología Molecular y Celular, DIAE, CIEMAT,
Madrid
[email protected]
Joana Visa
Servei d'Estabulari, IRO- Hospital Duran y
Reynals, Hospitalet de LLobregat
[email protected]
Marcos Seoane
Fisiología, Universidad de Santiago de
Compostela, Santiago de Compostela
[email protected]
Ana Zubiaga
Genetics, University of the Basque Country,
Bilbao
[email protected]
Marta Soler
LBI, Merck, Farma y Quimica, S.A., Barcelona
[email protected]
Jordi Surralles
Departament of Genetics and Microbiology,
Universidad Autónoma de Barcelona,
Bellaterra
[email protected]
90
Workshop Modelos Animales en Cáncer
91
Workshop Animal Models for Cancer
92
Workshop Modelos Animales en Cáncer
93
Workshop Animal Models for Cancer
94
Workshop Modelos Animales en Cáncer
95
Workshop Animal Models for Cancer
96
Workshop Modelos Animales en Cáncer
97
Workshop Animal Models for Cancer
98