Download Evaluación de Nuevas Tecnologías PPT (Giammatteo

Document related concepts
no text concepts found
Transcript
Nuevas Tecnologías
Si bien hay muchos fabricantes , tan solo 2
marcas en el mercado son las más conocidas
y se alzan como competidoras muy serias.
Hace algunos años Intel estaba a la cabeza tanto
de fabricación como de ventas y distribución,
pero un cambio en el mercado con una fuerte
aparición de AMD ha establecido un nuevo
estándar en las configuraciones de los equipos de
venta directa.
Porqué retrasar el reemplazo de PCs no es
una buena decisión tecnológica ni
financiera?
“El consejo que continuamente les doy a
mis colegas de IT es que demuestren
el valor que trae al negocio cualquier
gasto en tecnología.
Habiendo sido CIO, siempre he creído que
los gastos en tecnología deben verse como
un activo para la compañía, y no como un
costo para mantener operando el negocio”
Stacy Smith, Intel CFO
El dilema actual
• Derivado de la crisis económica mundial
muchas organizaciones están retrazando el
reemplazo de equipo de cómputo para reducir
sus costos
• Pareciera una decisión correcta (menos dinero
que gastar), sin embargo. . .
– Qué hay del costo asociado de mantener equipo viejo ? (mayor
a 3 años)
– Qué hay del mayor consumo de energía asociado a equipos
viejos ?
– Qué hay de los mayores riesgos de seguridad ?
– Qué hay del costo por m² que ocupan los servidores viejos ?
Porqué los equipos a partir de 3 años
cuestan más?
•
En promedio el costo de mantenimiento
de un equipo después del 3er año se
incrementa en un 59% (*)
Impresoras (6%)
Equipo LAN (7%)
•
Un equipo de 3 años o más consume
80% más energía eléctrica (*)
– Los datacenters acaparan la atención debido a la
concentración de equipos, sin embargo las PC‟s y
sus periféricos consumen mucha más energía
Equipo
Telecoms
móviles
(9%)
Equipo
Telecoms
Fijas
(15%)
PCs &
Monitores
(39%)
Servidores
incluyendo
enfriamiento (23%)
•
Equipos de 4 años de antigüedad
pueden experimentar un 53% de
incremento en incidentes de seguridad
(*)
(*) “Using Total Cost of Ownership to Determine Optimal PC Refresh Lifecycles”, Wipro Technologies, March
2009 (www.wipro.com/industryresearch).
Fuente: Gartner Inc. “Tera-Architectures A Convergence of New Technologies” by Martin Reynolds July26, 2007
Intel sugiere considerar los siguientes
aspectos al evaluar una renovación de
equipo de cómputo
• Productividad de los empleados
• Costos energía eléctrica & eficiencia energética
• Costos operativos (administración y soporte)
• Costos asociados a problemas de seguridad
informática
• Costos asociados al paro de labores originado
por desastres naturales o problemas de salud
pública
6
Intel® vPro™
La tecnología Intel® vPro™ ayuda a
reducir los costos de mantenimiento de
PCs mediante
• Desempeño inigualable
• Menor consumo de energía
• Diagnóstico y reparación remota
• Administración de Activos fuera de línea
• Aislamiento y recuperación de
PCs/Laptops infectadas
E8500
Multitarea con
aplicaciones de
productividad1
Hojas de cálculo
complejas + virus
scan2
Consumo de
energía
promedio4
(mayor es mejor)
(menor es mejor)
(menor es mejor)
3.6x más
rápido
6.7x más
rápido
1.5x
mejor
55 segundos
66.0 watts
6min. 13 seg.
100.9 watts
202
P4 630
(WinMark)
54.8
(WinMark)
Intel® vPro™
La tecnología Intel® vPro™ ayuda a reducir los
costos de mantenimiento de PCs mediante
• Toda la funcionalidad de una PC más los
beneficios de la movilidad
• Mismas capacidades de administración de activos
• Diagnóstico y reparación remota
• Administración de Activos fuera de línea
• Aislamiento y recuperación de PCs/Laptops infectadas
• Menor consumo de energía
P8600
T2700
Hojas de cálculo
complejas + virus
scan2
Word + PowerPoint
+ virus scan2
Consumo de
energía
promedio4
(menor es mejor)
(menor es mejor)
(menor es mejor)
1.2x más
rápido
1.3x más
rápido
1.6x mejor
1hr + duración de batería
1 min. 45 seg
1 min. 50 seg
20.3 watts
2 min. 8 seg
2 min. 24 seg.
33.0 watts
Intel® Xeon®
Comparado con servidores de hace 4 años
• Hasta 9 veces mayor desempeño por servidor
• Con un 18% de reducción en consumo de energía
• Capacidad de consolidación 9 a 1
• Hasta 90% menor costo de operación
• 89% reducción de espacio físico
• 92% reducción consumo de energía (anual)
• Retorno de inversión estimado de 8 meses
En 2005. . .
HOY
9:1
184 servidores
Xeon® de 1 núcleo
21 servidores
Xeon® 5500 de 4 núcleos
90% en reducción de
costos de energía
Arquitecturas Intel®
de Servidor para la Empresa
Intel proporciona elección de arquitectura y
flexibilidad en la evolución a los 64 bits
Arquitectura actual
Beneficios
Rendimiento
proporciona
líder, libre
deelección
64 de
bits
ej. Database, ERP, BI,soluciones
HPC
OS y
desde el centro
de
fabricante
datos hasta el puesto
cliente
Arquitectura elegida
Intel
Arquitectura RISC
arquitectura
IA-32
Memoria
Extendida
cuando se
necesite. Gran
rendimiento en
32 bits
Rendimiento, robustez
y escalabilidad líderes.
Arquitectura 64bits
pura
Precio/prestaciones
líderes con posibilidad de
direccionamiento 64 bits
* Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those
tests. Any difference in system hardware or software design or configuration may affect actual performance.
Arquitectura Intel®
Itanium 2
¿Por qué Itanium?: Más que un
procesador de 64 bits
EPIC=Proceso de
instrucciones
explícitamente paralelo
EPIC
2 años
Rendimiento
SuperScalar
+ 9 años
RISC
CISC
+ 20 años
10-15 años
 Nueva
arquitectura
 Paralelismo explícito
 Predicación
 Especulación
 Recursos masivos
 Compatibilidad IA-32
 Y por supuesto,
direccionamiento de 64
bits
Tiempo
La arquitectura para los próximos 25 años
Arquitecturas Tradicionales:
Paralelismo Limitado
Código fuente
original
Código máquina
secuencial
Hardware
Código
paralelizado
Compilación
Multiples unidades
functionales
Unidades de ejecución
disponibles usadas
ineficientemente
..
.
..
.
..
.
Los procesadores actuales están con
frecuencia hasta un 60% desocupados
..
.
Arquitectura de Microprocesador
Itanium™: Paralelismo Explicito
Código fuente
original
Código máquina
Ya paralelizado
Compilación
Compilador
Múltiples unidades funcionales
Hardware
Un compilador
optimizado para
Itanium™ analiza el
código en su
totalidad al compilar
Uso más eficiente
de los recursos de
ejecución
..
.
..
.
..
.
..
.
Optimiza la ejecución en paralelo
Procesador Intel® Itanium® 2 9M
Procesadores MP, máximo rendimiento, 130W
• Itanium® 2 Processor 1.60GHz, 9MB
• Itanium® 2 Processor 1.6GHz, 6M
• Itanium® 2 processor 1.5GHz, 4M
Procesadores DP, líderes en $/FLOP, solo DP
• Itanium® 2 Processor 1.60GHz, 3MB,
400MHz FSB, 99W
• Itanium® 2 Processor 1.6GHz, 3M,
533MHz FSB, 99W
Procesador de bajo consumo
• Itanium® 2 processor 1.3GHz, 3M, 62W
Mayor rendimiento, compatibilidad hardware
Roadmap de procesadores Intel® Itanium
Plataformas Multi-procesador (MP)
Plataformas Intel® Itanium®
2 MP
Common Platform
Arch. Tukwila
Montecito/Montvale
(Madison 9M)
Plataformas de dos procesadores (DP)
Plataformas Intel® Itanium®
2 DP e Itanium 2 LV
(Fanwood)




Arquitectura EPIC
MCA mejorado
Power Mgmt
IPMI 2.0
•
•
•
•
•
•
•
Dual-core
Multi-threading
Tecnologías Foxton, Pellston
Power Mgmt (Pconfig /PSMI)
Tecnologías Silvervale
Fully Buffered DIMMs
Gestionabilidad: Redirección
de consola (KVM, IDE-R),
Futuros chipset
•
•
•
•
•
Multi-core
Virtualizacion mejorada
Mejoras en I/O & memoria
Mejoras RAS
Common platform
architecture
• Gestionabilidad : Auto
Provision, Auto Protección
+
+
Plataformas actuales
Futuras Plataformas
Millington (+ LV)/
DP Montvale (+ LV)
2005-2006+
Futuro
Dual core y después: Multi-Core
Hoy
Single Core
2005-2006
Dual Core
Futuro
Multi-Core
4 o más cores
Cache
Core
Cache
Core
Cache
Core
+ Cache
• Futuras tecnologías de fabricación de Intel (90nm, 65nm)
permitirán multiples cores manteniendo el tamaño de “die” y
el consumo dentro de los límites actuales
Dual Core es sólo el principio…
All products, dates and features are preliminary and subject to change without notice
Procesadores Intel Xeon e
Intel Xeon MP
¿Qué es Intel® EM64T?
Funcionalidades
Modos
Direccionamiento de
memoria extendido
Legacy Mode
32 OS / 32 Apps
64-bit Pointers, 64-bit Registers
+
Registros Adicionales
8-SSE & 8-Gen Purpose
Calculo Enteros de Doble
Precision
(64-bit)
Soporte de Espacio de
direcciones plano
+
Compatibility Mode
64 OS / 32 Apps
64-bit Mode
64-bit
64/64
64
OS / 64 Apps
=
Con Intel®
EM64T
Evolucion de la arquitectura IA-32 con mejoras para soportar
extensiones de memoria a partir de mediados de 2004
EM64T Modos soportados
EM64T
Modo Legacy
Modo Compatibilidad
Modo 64-Bit
• SO 32-bit OS
• SO 64-bit
• SO 64-bit
• Aplicaciones 32bit
• Aplicaciones 32-bit
• Aplicaciones 64-bit
• Drivers 64-bit
• Drivers 64-bit
• Espacio de
direccionamiento 4 GB
• Espacio virtual de
direcciones plano de
64-bit
• Drivers 32-bit
• Registros (GPR) 32-bit
• Registros (GPR) 64-bit
Procesador Intel® Xeon™: La nueva
generación de plataformas
empresariales hasta 2 procesadores
Procesador Intel® Xeon™ a 3.60 GHz con FSB 800 MHz y 2 MB de
Anunciado el 14
caché de nivel 2
de Febrero
Intel® E7525 Chipset
Chipset Intel® E7520
Chipset Intel® E7320
Procesador Intel® IOP332 I/O
Arquitecturas Optimizadas para Servidor y Workstation
Procesador Intel® Xeon™ MP: 2 nuevas
plataformas multiprocesadoras
• Plataforma MP de Rendimiento
– Procesador Intel® Xeon™ MP 64-bit
• 3.33 GHz / 8MB L3 cache
• 3.00 GHz / 8MB L3 cache
• 2.83 GHz / 4MB L3 cache
– Chipset Intel® E8500
• Plataforma MP de Valor
– Procesador Intel® Xeon™ MP 64-bit
• 3.66 GHz / 1MB L2 cache
• 3.16 GHz / 1MB L2 cache
– Intel® E8500 Chipset
Anunciados el 29 de
Marzo
Nueva plataformas Intel® Xeon™
RAS
Reliability
Availability
Serviceability
bus con corrección errores
ECC, mirroring & RAID de
memoria (solo MP)
Consumo de Potencia
New
New
Demand Based Switching
XD bit
New
RAID Inteligente
New
Nueva Generación de BUS
E/S: PCI Express
Memoria más rápida:
DDR2
New
New
nuevos chipsets avanzados
Extensiones 64-bit
Bus de Sistema más
rápido: 800MHz (DP) y
doble bus a 667MHZ (MP)
New
Mejoras en la
Arquitectura: SSE3, HT
optimizado
Capacidad de crecimiento
Procesador Xeon a 3.6GHz y 2
MB L2 cache
Procesador Xeon MP a
3.33GHz y 8 MB L3 cache
Rendimiento
Mirando hacia el futuro
• Nuevas Tecnologías que permitan el
crecimiento futuro de su negocio
–
–
–
–
–
Soporte 64-Bit
Multi-Core
Tecnología de Virtualizacion Intel®
Tecnología Intel® de Aceleración de E/S
Tecnología Intel® Active Management
Núcleos múltiples : Rendimiento
a través del Paralelismo
Rendimiento Normalizado vs. el primer procesador Intel® Pentium® 4
Performance
MULTI-CORE
10X
Estamos
aquí
SINGLE CORE
3X
2004
2000
Previsión de futuro
Source: Intel
2008+
Resumen
• Una sola plataforma de servidor no responde a todas las
necesidades de la informática empresarial actual
• La gama de procesadores para servidores de Intel es la
más completa y se adapta a cada tipo de necesidad
• La migración progresiva a los entornos de 64 bits
permitirá a los usuarios de bases de datos eliminar
cuellos de botella y obtener mayor rendimiento
• Futuras tecnologías como los núcleos múltiples o la
tecnología de Virtualización acentuarán aún más el
liderazgo de los procesadores Intel para servidores
Recursos de referencia
Estimador para Renovación de PCs
• Estimador de TCO
www.intel.com/business/business-pc/roi/demo.htm
Estimador para Renovación de Servidores
• Estimador de TCO
www.intel.com/go/xeonestimator
Porqué Renovar con Tecnología Intel® vPro™
• Estimador de ROI en línea para calcular los ahorros con vPro™
www.intel.com/business/business-pc/roi/demo.htm
AMD Habla De Su Primera
Arquitectura Completamente Nueva
• Nuestro equipo editorial, ha llevado a cabo una
excelente labor para informales todo lo último que ha
"comentado" AMD durante el AMD Analyst Day en
relación a su futuro en el sector de los procesadores.
Así, ya les hemos contado sobre sus futuras plataformas
deEscritorio, Móviles y Servidores, les hemos hablado
del Sandtiger Octa-Core, de la tecnología G3 Memory
Extender, los procesos de fabricación, y por supuesto
del ya conocido Barcelona. Sin embargo, esto no es
todo, y a continuación queremos introducirlos en
algunos nuevos conceptos, fundamentales para AMD,
que son la base de todo lo recién indicado y que
permitirá complementar la excelente cobertura ya
entregada y mencionada en las líneas superiores.
1.- M-Space.
• Tal como se indicó, AMD planea lanzar
su plataforma Opteron de tercera generación, el
año 2009, con el procesador Sandtiger OctaCore. Bajo este procesador, se encuentra un
nuevo acercamiento de la Compañía, modular,
denominado M-Space. De acuerdo a la gente
de AMD, M-Space permite mezclar y calzar
funciones de una CPU para determinadas
tareas.
"Acercamiento modular de
M_Space"
Definición de M-SPACE
•
La definición de M-Space, es la siguiente,
– a.- Modular: "Bloques de diseño" reconfigurables para mayor agilidad
y velocidad.
– b.- Escalable: Escalamiento linear de rendimiento "multi-thread" y
"single-thread“.
– c.- Portabilidad: Eficiencia energética para mayor portabilidad y
movilidad.
– d.- Accesibilidad: Compromiso a una innovación abierta.
– e.- Compatible: Compatibilidad hacia atrás y facilidad de actualización.
– f.- Eficiencia: Eficiencia óptima en el chip y a nivel de Entrada/Salida.
"Definición del concepto M-Space"
• Como se puede apreciar, M-Space es una
completa redefinición de la estrategia de diseño
de AMD, la cual, como se mencionó, es la base
del Sandtiger.
• Pese a lo anterior, este
nuevo procesador también incluye otro
concepto, no menos interesante, eje central de
los planes futuros de la Compañía, el cual
pasamos a revisar a continuación.
2.- Bulldozer.
• El Sandtiger de 8 núcleos de AMD, consiste en
8 Bulldozers. Suena extraño el nombre, el cual ha sido
asociado a una intención, por parte de la Compañía, de
demoler el mercado con este producto.
• Bulldozer, es el nombre que la Empresa le ha dado a
uno de los núcleos de CPU que se basan en la ya
mencionada arquitectura M-Space. AMD ha indicado
que se obtendrán mejoras dramáticas en rendimiento
por watt, en aplicaciones de Computación de Alto
Rendimiento ("High Performance Computing" o "HPC"),
al usar los núcleos Bulldozer.
"Objetivo del nuevo núcleo
Bulldozer"
• Lo interesante del tema, es que a diferencia
de Barcelona y Shangai, los cuales corresponden a una
evolución de la longeva arquitectura K8, Bulldozer es
algo totalmente nuevo y diferente.
• AMD colocará 8 núcleos Bulldozer en el Sandtiger, con
un controlador de memoria. Segúnla Compañía, el
concepto detrás de M-Space podrá verse en este
producto al optimizarse el diseño para Servidores y
elevar la vara del rendimiento por watt, tanto para
aplicaciones "single-threaded" como para aquellas
"multi-threaded". Algunos expertos ya hablan de
plataformas capaces de "mutar" de acuerdo a los
requerimientos de las aplicaciones.
3.- Fusion.
• La arquitectura M-Space, también puede
relacionarse con la comentada
tecnologíaFusion, la cual
mezcla CPUs y GPUs.
• AMD planea mezclar y calzar componentes del
concepto M-Space en Falcon, un
procesador Fusion optimizado
para Computadores de Escritorio mainstream, y
paraPortátiles. Falcon es la base de la
plataforma de rango medio
de Escritorio de AMD, llamada Copperhead.
"Componentes del Falcon-Fusion"
• Falcon cuenta con cuatro núcleos Bulldozer,
junto a un procesador gráfico integrado.
Esta GPU, soporta tecnología DirectX 10,
posiblemente DX11, y cuenta con la tecnología
de AMD denominada Universal Video Decoder o
UVD. También posee un PCIe integrado.
4.- Bobcat.
• Junto con Bulldozer, AMD cuenta con el
núcleo Bobcat, también para
procesadoresFusion, diseñado para
aplicaciones moviles, ultra-móviles y
de electrónica de consumo.Bobcat también es
un diseño completamente nuevo y cuenta con
grandes capacidades de escalamiento
energético. Los procesadores basados
en Bobcat pueden llegar a consumir sólo 1
watt de energía. No se conocen mayores
detalles de los procesadoresFusion con
"tecnología Bobcat".
"El Bobcat dirigido al sector móvil"
5.- GPUs.
• Cuando AMD compró ATI, obviamente era con
una idea fija en mente. En efecto, la
Compañía está plenamente convencida que el
desarrollo gráfico, y por supuesto la ya tan
comentada integración con CPUs, es más
importante que dedicarse sólo al diseño
deprocesadores. Obviamente, ambos conceptos
están fuertemente arraigados e
interrelacionados en los Roadmaps de la
Compañía.
"Nuevas tecnologías gráficas de
AMD-ATI, primera parte"
• Después del desastre que se ha obtenido con la
incursión de AMD en el mundo DirectX 10,
muchos pueden mirar con cierta mofa a la
Compañía, cuando ésta se refiere a gráficos de
la siguiente generación.
"Nuevas tecnologías gráficas de
AMD-ATI, segunda parte"
• Para el común de las personas, ATI es sinónimo
de tarjetas de video para jugar. Sin embargo, no
debe olvidarse que ésta, siempre ha sido un
fuerte suministrador de productos para
dispositivos móviles, y AMD intenta continuar en
esa línea, fortaleciéndola, al integrar tecnologías
que se observan en los PCs, a los más variados
dispositivosportátiles.
6.- Palabras Finales.
• Tiempo atrás, AMD fue muy criticada por guardar silencio
en relación a sus nuevos proyectos y tecnologías. Incluso,
se llegó a decir que eso había influido en los últimos
"fracasos" de la Compañía. En esa oportunidad, AMD se
comprometió a ser "más abierta".
• Claramente, la Empresa ha cumplido con lo prometido,
pero se ha ido al otro extremo. Nos ha llenado de
anuncios, conceptos, nombres, etc. Todo bien, claro que
esto debe plasmarse en lanzamientos reales ya que
muchos simplemente, cuando miran hacia AMD, piensan,
• "…ver para creer.“
• Ciertamente, Bulldozer, sin desmerecer las otras
tecnologías, será el "caballo de batalla" de AMD. Es un
alejamiento definitivo de la fiel plataforma K8, pero al
mismo tiempo es un tremendo desafío.
"Visión modular del futuro por parte
de AMD"
SUN Microsystems
Scalable Processor Architecture
(SPARC)
Overview
•Designed to optimize compilers and pipelined
hardware implementations.
• Offers fast execution rates.
• Engineered at Sun Microsystems in 1985
Based on RISC I & II which were developed at
University of Cal at Berkeley.
• SPARC “register window” architecture
Features
Performance and Economy
Simplified instruction set
Higher number of instructions with fewer transistors
Scalability
Flexible integration of cache, memory and FPUs
Open Architecture
Compatible technology to multiple vendors
Now allow access to CPU component techniques
Complete set of development tool available for h/w & s/w
Registers
General purpose/ working data registers
IU‟s „r‟ registers
FPU‟s „f‟ registers
Control status registers
IU control/status registers
FPU control/status registers
Coprocessor (CP) control/status registers
Registers
Window Overlapping
Each window shares its ins and outs with two
adjacent windows
Incremented by a RESTORE instruction
decremented by a SAVE instruction
Due to windowing the number available to software
is 1 less than number implemented
When a register is full the outs of the newest window
are the ins of the oldest, which still contain valid
program data
IU Control/Status Registers
Processor State Register (PSR)
Window Invalid Mask (WIM)
Multiply/Divide (Y)
Program Counters (PC, nPC)
Ancillary State Registers (ASR)
Deferred-Trap Queue
Trap Base Register (TBR)
IU Control/Status Registers
Processor State Register (PSR)
Contains various fields that control and hold status
information
Impl
31:28
Ver
27:24
Icc
23:20
Reserved
19:14
EC
13
EF
12
PIL
11:8
S
7
PS
ET
6
5
CWP
Window Invalid Mask (WIM)
To determine a window overflow or underflow
W31 W30 W29 -----------------------
W1 W0
4:0
Memory
Each location identified
by
Address Space
Identifier (ASI)
64-bit address
Real memory
No side effects
I/O locations
Side effects
Snoop
Instruction Formats
VIS – Visual Instruction Set
Visualization built into chip
Examples of formats
Processor Comparison Summary
Architecture
Open versus proprietary
64-bit architecture
High volume processor
High bandwidth
UltraSPARC-IIi
SPARC V-9
Open
Ð
Ð
Ð
HP PA-8000
HP-PA
Proprietary
Integration Level
On-chip MMU
On-chip I/O interface
On-chip cache
On-chip multimedia support
Ð
Ð
Ð
Ð
Ð
300 MHz
Features
Clock speed
Binary compatibility with
existing applications
Performance
SPECint95/fp95
Target Environment
Cyrix MediaGX
X86
Proprietary
Ð
Ð
MIPS R10000
MIPS III
Open
Ð
Intel Pentium II
PowerPC 603e
X86
PowerPC
Proprietary
Open
Ð
Ð
Ð
Ð
Ð
Ð
Ð
Ð
Ð
180 MHz
180 Mhz
Ð
Ð
>12/>12
11.8/18.7
Low cost
desktops and
servers
Workstations
Low-power,
and
low-cost
servers
desktops and
Ð
Ð
Ð
Ð
195 MHz
233-300 Mhz
300 MHz
Ð
Ð
Ð
Ð
N/A
10.7/19.0
11.7/8.15
7.4/6.1
High-end embedded
applications:
networking,
Desktops
Workstations
Workstations and
portables
servers
What makes the CISC lock-up?
Elegant forward looking branch instruction set
Compiler can go to different branches
More complete testing of SPARC
Simpler compiler design
Better integration of OS interrupts to H/W
interrupts
Solaris has a tighter source code
Less devices to support
References
Weaver, David/Tom Germond. SPARC Architecture
Manual: Version 9, Prentice Hall. 1994.
Stallings, William. Computer Organization and
Architecture: 5th Edition, Prentice Hall. 2000.
Bresani, Fred. Systems Engineer, Sun Microsystems.
http://www.sun.com
http://www.sparc.com
http://www.fujitsu.com
IBM
POWER 7 Series
May
2010
•POWER7 Processor
Agenda
•POWER7 Servers
 POWER 750
 POWER 755
 POWER 770
 POWER 780
 POWER Blades
•Performance/Competition
•Active Memory Expansion
•Related Announcements
•Upgrades
•Q&A
Customers are Moving to Higher Value
…as shown by the largest shift of customer spending in UNIX History
UNIX Server Rolling Four Quarter Average Revenue Share
POWER6
POWER5™
Micro-Partitioning
Live
Partition
Mobility
POWER4™
Dynamic LPARs
Source: IDC Quarterly Server Tracker Q309 release, November 2009
POWER7 System Highlights
•Balance System Design
– Cache, Memory, and IO
•POWER7 Processor Technology
– 6th Implementation of multi-core design
– On chip L2 & L3 caches
•POWER7 System Architecture
– Blades to High End offerings
– Enhances memory implementation
– PCIe, SAS / SATA
•Built in Virtualization
– Memory Expansion
– VM Control
•Green Technologies
– Processor Nap & Sleep Mode
– Memory Power Down support
– Aggressive Power Save / Capping Modes
600
500
400
300
•Availability
– Processor Instruction Retry
– Alternate Process Recovery
– Concurrent Add & Services
200
100
0
JS23
JS43
520
550
560
570/16
570/32
595
73
Power your Planet
+
AIX - the future of UNIX
Total integration with i
Scalable Linux ready
for x86 consolidation
Workload-Optimizing Systems
Virtualization without Limits
 Drive over 90% utilization
Dynamic Energy Optimization
 70-90% energy cost reduction
 Dynamically scale per demand
 EnergyScale™ technologies
Resiliency without Downtime
 Roadmap to continuous
Management with Automation
 VMControl to manage
availability
 High availability systems &
scaling
virtualization
 Automation to reduce task time
Smarter Systems for a Smarter Planet.
POWER7 Processor
POWER7
Processor
IBM POWER Processor Roadmap
3 Year Revolution
18 month “+” evolution
POWER8
POWER7/7+
POWER6/6+
POWER5/5+
POWER4/4+
Hardware
Virtualization
First Dual Core for Unix & Linux
Dual Core & Quad Core Md
in Industry
Enhanced Scaling
 Dual Core
 Chip Multi Processing
 Distributed Switch
 Shared L2
 Dynamic LPARs (32)
180nm,
2001
2 Thread SMT
Distributed Switch +
Core Parallelism +
FP Performance +
Memory bandwidth +
130nm, 90nm
2004
Fastest
Processor
In Industry










Dual Core
High Frequencies
Virtualization +
Memory Subsystem +
Altivec
Instruction Retry
Dyn Energy Mgmt
2 Thread SMT +
Protection Keys
65nm
2007
Most
POWERful &
Scalable
Processor in
Industry









IBM is the leader
in Processor
and Server
design
4,6,8 Core
32MB On-Chip eDRAM
Power Optimized Cores
Mem Subsystem ++
4 Thread SMT++
Reliability +
VSM & VSX
Protection Keys+
45nm, 32nm
2010
Future
Cores:








Transition from POWER6
POWER7
8 Intelligent Cores / chip (socket)
4 and 6 Intelligent Cores available on some models
12 execution units per core
Out of order execution
4 Way SMT per core
32 threads per chip
L1 – 32 KB I Cache / 32 KB D Cache per core
L2 – 256 KB per core
Chip:
 32MB Intelligent L3 Cache on chip
Memory:
 Dual DDR3 Controllers
 100 GB/s sustained Memory bandwidth / chip
Scalability:




Up to 32 Sockets
360 GB/s peak SMP bandwidth / chip
590 GB/s peak I/O bandwidth / chip
Up to 20,000 coherent operations in flight
P Core Core
O
W L2
L2
E
R
G L3 Cache
X eDRAM
B
U L2
S
Core
Core
L2
L2
L2
L2
L2
Core
Core
Core
Memory Interface
Energy:
 Aggressive processor Nap & Sleep modes
 10% “Over clock” when thermals are good
Core
Memory++
S
M
P
F
A
B
R
I
C
Memory Channel Bandwidth Evolution
POWER5
POWER6
POWER7
Memory Performance:
2x DIMM
Memory Performance:
4x DIMM
Memory Performance:
6x DIMM
D
D
R
3
DDR2 @ 553 MHz
Effective Bandwidth:
1.1 GB/s
DDR2 @ 553 / 667 MHz
Effective Bandwidth:
2.6 GB/sec
D
D
R
3
D
D
R
3
D
D
R
3
D
D
R
3
D
D
R
3
D
D
R
3
D
D
R
3
D
D
R
3
DDR3 @ 1066 MHz
Effective Bandwidth:
6.4 GB/sec
D
D
R
3
Multi-Threading Evolution
Single thread Out of Order
S80 HW Multi-thread
FX0
FX1
FP0
FP1
LS0
LS1
BR
C
XR
L
FX0
FX1
FP0
FP1
LS0
LS1
BR
CR
X
L
POWER5 2 Way SMT
POWER7 4 Way SMT
FX0
FX1
FP0
FP1
LS0
LS1
BR
CR
X
L
FX0
FX1
FP0
FP1
LS0
LS1
BR
CR
X
L
No Thread
Executing
Thread 0
Executing
Thread 2
Executing
81
Thread 1
Executing
Thread 3
Executing
POWER7 TurboCore Mode
Power 780
POWER7
TurboCore
Chip Chip
 TurboCore Chips: 4 available cores
 Aggregation of L3 Caches of unused cores.
 TurboCore chips have a 2X the L3 Cache per
Chip available
–4 TurboCore Chips
L3
= 32 MB
 Performance gain over POWER6.
–Provides up to 1.5X per core
to core
 Chips run at higher frequency:
–Power reduction of unused
cores. TurboCores
 With “Reboot”, System can be reconfigured
to 8 core mode.
Unused
–ASM Menus Core
P
O
W
E
R
Core Core Core Core
L2
G
X
B
U
S
L2
L2
L2
32 MB
L3 Cache
L2
L2
L2
L2
Core Core Core Core
Memory Interface
S
M
P
F
A
B
R
I
C
POWER7 Multi-Threading Options
•TurboCore Option
•50% of the available cores active
Standard Option
All cores active
3
3
2.5
2.5
2
2
1.5
1.5
1
1
0.5
0.5
0
0
SMT4
SMT2
Single
SMT4
SMT2
Single
POWER7
Servers
Power Systems Portfolio
Power 780
Consistency




Binary compatibility
Mainframe-inspired reliability
Advanced Virtualization
AIX, Linux and IBM i OS
Complete flexibility for workload
deployment
Power 595
Power 770
Power 570
Power 750
Power 550
Power 700
701 & 702
JS Blades
Power 520
Power 755
HPC
Power 575
Power is the Innovation that will Deliver Business Advantages
Leadership Performance and Energy Efficiency
 Industry leading performance with POWER7 processors
Power 750 Express: 1- to 4-socket; 6- or 8-cores per socket
 ENERGY STAR-qualified
Meets EPA guidelines for energy efficiency
 Workload-optimizing capabilities improve performance
Power 750 Express
Intelligent Threads optimization, Intelligent Cache sharing,
Active Memory Expansion and 320 virtual machines in 2010
 Intelligent Energy capabilities that balances performance
and efficiency:
Frequency boost for increased performance or reduction
during low demand for energy reduction
>3X increased performance per watt
 Ease of Ownership
Popular, ready to run „Edition‟ configurations
Light Path Diagnostics
Customer Setup
Power 750 System
8233-E8B
POWER7 Architecture
DDR3 Memory
System Unit SAS SFF
Bays
4U
Depth: 28.8”
System Unit
IO Expansion Slots
Integrated SAS / SATA
System Unit
Integrated Ports
Integrated Virtual Ethernet
System Unit Media Bays
IO Drawers w/ PCI slots
Cluster
Redundant Power and
Cooling
Certification (SoD)
EnergyScale
6 Cores @ 3.3 GHz
8 Cores @ 3. 0, 3.3, 3.55 GHz
Max: 4 Sockets
Up to 512 GB
Up to 8 Drives (HDD or SSD)
73 / 146 / 300GB @ 15k (2.4 TB)
(Opt: cache & RAID-5/6)
PCIe x8: 3 Slots (2 shared)
PCI-X DDR: 2 Slots
1 GX+ & Opt 1 GX++ 12X cards
Yes
3 USB, 2 Serial, 2 HMC
Quad 10/100/1000
Optional: Dual 10 Gb
1 Slim-line DVD & 1 Half Height
PCIe = 4 Max: PCI-X = Max 8
12X SDR / DDR (IB technology)
Yes (AC or DC Power)
Single phase 240 VAC or -48 VDC
NEBS / ETSI for harsh environments
Active Thermal Power Management
Dynamic Energy Save & Capping
750 CPW & rPerf Details
6-core
8-core
8-core
3.3 GHz
CPW
rPerf
6-core
37200
70.07
12-core
69200
134.54
18-core
94900
193.40
24-core
135300
252.26
8-core
44600
81.24
16-core
82600
155.99
24-core
122500
224.23
32-core
158300
292.47
8-core
47800
86.99
16-core
88700
167.01
24-core
129700
140.08
32-core
168800
313.15
181000
331.06
3.0 GHz
3.3 GHz
#8335
#8334
#8332
8-core 3.55 GHz #8336
32-core
POWER6
rPerf
550 (8)
4.7Ghz
68.20
550 (8)
5.0GHz
78.60
560 (16)
3.6GHz
100.3
0
570 (16)
4.4GHz
127.3
2
570 (16)
5.0GHz
141.2
1
595 (32)
4.2GHz
266.5
1
595 (64)
4.2GHz
479.8
9
595 (32)
5.0GHz
307.1
2
595 (64)
5.0GHz
553.0
1
Power 750 vs Power 550 / 560
Performance* / K BTU
Performance* / KW
180
70
160
60
140
50
120
100
40
80
30
60
20
40
20
> 406% Improvement
0
10
> 421% Improvement
0
Power 750
Power 550
Power 560
Power 750
Power 550
Power 560
Power 755 4-Socket HPC System
Power 755
4U x 28.8” depth
Up to 8.4 TFlops per Rack
( 10 nodes per Rack )
5.3 / 6.1
RHEL
/ SLES
POWER7 Architecture
4 Processor Sockets = 32 Cores
8 Core @ 3.3 GHz
DDR3 Memory
128 GB / 256 GB, 32 DIMM Slots
System Unit
SAS SFF Bays
Up to 8 disk or SSD
73 / 146 / 300GB @ 15K (up to 2.4TB)
System Unit
Expansion
Integrated Ports
PCIe x8: 3 Slots (1 shared)
PCI-X DDR: 2 Slots
GX++ Bus
3 USB, 2 Serial, 2 HMC
Integrated Ethernet
Quad 1Gb Copper
(Opt: Dual 10Gb Copper or Fiber)
System Unit Media
Bay
1 DVD-RAM ( No supported tape bay )
Cluster
Up to 64 nodes
Ethernet or IB-DDR
Redundant Power
Yes (AC or DC Power)
Single phase 240vac or -48 VDC
Certifications (SoD)
NEBS / ETSI for harsh environments
EnergyScale
Active Thermal Power Management
Dynamic Energy Save & Capping
Power 755 vs. 750 Offering Structures
Feature
750
755
Processors
32-core @ 3.3 GHz
8 / 16 / 24 / 32-core @ 3.55 GHz
6 / 12 / 18 / 24-core @ 3.3 GHz
8 / 16 / 24 / 32-core @ 3.0 GHz
Memory
128GB - 256GB
4GB & 8GB DIMMS
8 - 512GB
4GB, 8GB, 16GB DIMMS
GX slot support
Yes – IB clustering
Yes
I/O Drawer support
No
Yes
DASD Backplane
No Split Backplane
Split Backplane support
Integrated Ethernet
Quad GbE or Dual 10GbE
Quad GbE or Dual 10GbE
Virtualization
No PowerVM support
PowerVM Std and Ent
System unit SFF
Bays and drives
8 SFF SAS HDD / SDD
10k and 15K SFF drives
8 SFF SAS HDD / SDD
10k and 15K SFF drives
Optional Integrated RAID
Internal Tape
No
Yes
Performance Metric
TFLOPS
rPerf
Operating System
AIX, Linux
No H/W Raid Cards
AIX, IBM i, Linux
H/W Raid Cards
93
Power 770
Power 770
Processor Technology
4U x 32 inches Depth
Maint. Coverage: 9 x 5
L3 Cache
Redundant Power &
Cooling
Redundant Server
Processor
Redundant Clock
Concurrent Add Support
Concurrent Service
System Unit
Processors
DDR3 Memory (Buffered)
SAS/SSD SFF Bays
DVD-RAM Media Bays
SAS / SATA Controller
PCIe bays
GX++ Slots (12X DDR)
Integrated Ethernet
USB
12X I/O Drawers w/ PCI
slots
6 Cores @ 3.55 GHz
8 Cores @ 3.1 GHz
On Chip
Yes
Yes / Two Enclosure minimum
Yes / Two Enclosure minimum
Yes
Yes
Single Enclosure
4 Enclosures
Up to 2 Sockets
8 Sockets
Up to 512 GB
Up to 2 TB
6
24
1 Slim-line
4 Slim-line
2/1
8/4
6 PCIe
24 PCIe
2
8
Std: Quad 1Gb
Std: Four Quad 1Gb
Opt: Dual 10Gb + Opt: Four x Dual 10Gb
Dual 1 Gb
+ Dual 1 Gb
3
12
Max: 4 PCIe, 8
Max: 16 PCIe, 32 PCI-X
PCI-X
94
Power 780
Power 780
Processor Technology
4 Cores @ 4.14 GHz
8 Cores @ 3.86 GHz
On Chip
TurboCore
L3 Cache
Redundant Power &
Yes
Cooling
Redundant Server
Yes / Two Enclosure minimum
Processor
Redundant Clock
Yes / Two Enclosure minimum
Concurrent Add Support
Yes
Concurrent Service
Yes
Single Enclosure
4 Enclosures
System Unit
Processors
2 Sockets
8 Sockets
Maint Coverage
24 X 7
PowerCare Support
DDR3 Memory (Buffered)
SAS/SSD SFF Bays
(CEC)
DVD-RAM Media Bays
SAS / SATA Controller
PCIe (CEC)
GX++ Slots (12X DDR)
Integrated Ethernet
USB
12X I/O Drawers w/ PCI
slots
Up to 512 GB
Up to 2 TB
6
24
1 Slim-line
4 Slim-line
2/1
8/4
6 PCIe
24 PCIe
2
8
Std: Quad 1Gb
Std: Four Quad 1Gb
Opt: Dual 10Gb + Opt: Four x Dual 10Gb
Dual 1 Gb
+ Dual 1 Gb
3
12
Max: 4 PCIe, 8
Max: 16 PCIe, 32 PCI-X
PCI-X
95
770 and 780 CPW & rPerf Details
770
12-core
16-core
8-core
780
3.5 GHz
CPW
rPerf
12-core
73100
140.75
24-core
99000
261.19
36-core
131050
377.28
550 (8) 4.7Ghz
68.20
48-core
248550
493.37
550 (8) 5.0GHz
78.60
560 (16) 3.6GHz
100.30
570 (16) 4.4GHz
127.32
3.1 GHz
#4980
#4981
POWER6
rPerf
16-core
88800
165.30
570 (16) 5.0GHz
141.21
32-core
155850
306.74
595 (32) 4.2GHz
266.51
48-core
229800
443.06
595 (64) 4.2GHz
479.89
64-core
292700
579.39
595 (32) 5.0GHz
307.12
CPW
rPerf
595 (64) 5.0GHz
553.01
16-core
105200
195.45
32-core
177400
362.70
48-core
265200
523.89
64-core
343050
685.09
3.86 GHz
#4982
780 TurboCore mode values not shown
Power 770 & 780 vs Power 570
Differences
Power 570
Power 770 & 780
Up to 8 sockets, Up to 32 Cores
Up to 8 Sockets, Up to 64 cores
Up to 768 GB Memory
Up to 2 TB Memory ( Initial GA will be 1 TB)
DDR2 DIMMS
DDR3 DIMMS
Six 3.5” SAS Bays / Enclosure
Six SFF SAS Bays / Enclosure
4 PCIe & 2 PCI-X slots per Enclosure
6 PCIe slots per Enclosure
No write cache or RAID-5/6 support
Write cache & RAID-5/6 support
Single integrated DASD / Media Cntlr
Three integrated DASD / Media Controllers
Optional Split Backplane
No Power & Management Thermal
Clock Cold Failover
ECC with bit steer
Concurrent Drawer Maint restrictions
Concurrent Drawer Add cable restrictions
Standard Split backplane
Optional Tri-Split Backplane
Power & Thermal management
TPMD support
Clock Hot Failover
ECC with DRAM sparing
No Restrictions ( 4Q / 2010 )
No Restrictions
97
IBM Power Systems Comparisons
Nodes
Cores (single system
image)
Frequency
SMP buses
System memory
Memory per core
Memory Bandwidth
(peak)
Power 750
Power 770
Power 780
Power 595
One
6, 12, 18, 24 or
8, 16, 24, 32
3.0, 3.3, 3.55 GHz
4 byte
Up to 512 GB
16 or 21 GB
Up to four
Up to four
4 – 64
4 – 64
3.1, 3.5 GHz
8 byte
Up to 2 TB*
32 or 42 GB
3.8, 4.1 GHz
8 byte
Up to 2 TB*
32 or 64 GB
Up to eight
8 – 64
Upgradeable to 256
4.2, 5.0 GHz
8 byte
Up to 4 TB
64 GB
273 GB/s
1088 GB/s
1088 GB/s
1376 GB/s
Memory Bandwidth
per core (peak)
Memory controllers
8.5 GB/s
17 or 22 GB/s
17 or 34 GB/s
21.5 GB/s
1 per processor
2 per processor
2 per processor
2 per processor
I/O Bandwidth (peak)
30 GB/s
236 GB/s
236 GB/s
640 GB/s
I/O Bandwidth per
core (peak)
I/O loops
Total disk drives
rPerf per core
Maximum LPARs
0.9GB/s
3.6 or 4.9 GB/s
3.6 or 7.3 GB/s
10 GB/s
Up to 2
Up to 576
Up to 11
Up to 320*
RAS
Standard
Warranty
PowerCare
9x5
No
Up to 8
Up to 1200
Up to 11
Up to 640*
Enhanced Memory
Dynamic FSP &
clocks
9x5
No
Up to 8
Up to 1200
Up to 13
Up to 640*
Enhanced Memory
Dynamic FSP &
clocks
24 x 7
Yes
Up to 32
Up to 2640
Up to 10.8
Up to 254
Enhanced Memory
Dynamic FSP &
clocks
24 x 7
Yes
*
Planned availability in 4Q 2010
Standard
Move Up to Enterprise Class RAS
RAS Item
Optional
Not available
Power 750
Power 770
Power 780
Redundant / Hot Swap Fans & Blowers
Hot Swap DASD / Media / PCI Adapters
Concurrent Firmware Update
Redundant / Hot Swap Power Supplies
Dual disk controllers (split backplane)
Processor Instruction Retry
Alternate Processor Recovery
Storage Keys
PowerVM™/Live Partition Mobility/Live Application Mobility
Redundant Service Processors
*
*
Redundant System Clocks
*
*
Hot-node Add / Cold-node Repair
*
*
Hot-node Repair / Hot-memory Add
*
*
Dynamic Service Processor and System Clock Failover
*
*
Hot-node Repair / Hot-memory Add for all nodes**
*
*
Redundant / Hot Swap Power Regulators
Dynamic Processor Sparing
Memory Sparing
Hot GX Adapter Add and Cold Repair
POWER7 Enhanced Memory
Hot GX Adapter Repair
* Requires two or more nodes
** Planned for 4Q 2010
POWER7 systems are over twice as good as POWER6 systems!

Twice the performance:
Power 780 32-core performance per core is over twice
the Power 570 32-core

Twice the scaling:

Twice the capacity:
Power 770
and 780 both offer twice the number of cores as the
largest Power 570
Power 770 and 780 offer more than twice (~3 times) the
throughput of the largest Power 570

Twice the memory:
- Over twice the physical memory of the Power 570
- Active Memory ExpansionTM enables up to twice the
effective memory compared to what is physically
installed

Twice the energy efficiency:
Power 770 & 780 offer over twice the performance per
watt (up to 3 times) than the most efficient Power 570

Twice the cores for the same price:
Buy twice the cores with the Power 770 and pay less
than a comparable POWER6 based Power 570
POWER7
Blades
Power System Blades
PS700/701/702
4 Cores @ 3.0 GHz PS700
8 Cores @ 3.0GHz PS701
16 Cores @ 3.0GHz PS702
64GB/128GB/256GB
PS700/PS701/PS702
POWER7 Architecture
DDR3 Memory
Internal Disk
0-2 SFF DASD
PCIe Slots
2/2/4
Integrated SAS / SATA
Yes
System Unit
Integrated Ports
3 USB, 2 Serial, 2 HMC
Integrated Virtual Ethernet
Quad Gigabit
Optional: Dual 10 Gb
EnergyScale
Active Thermal Power Management
Dynamic Energy Save & Capping
Description
rPerf
CPW
8406-70Y PS700 4-cores 3.0GHz
45.13
21,000
8406-71Y PS701 8-cores 3.0GHz
81.24
42,000
8406-72Y PS702 16-cores 3.0GHz
154.36
76,300
IBM BladeCenter PS700/701/702 Express Smart BladeCenter Solutions with
Power Blades
• Performance and Energy Efficiency
• Smart choices to minimize complexity, improve efficiency and
scale easily
• Single-wide 4 or 8-core or Double-wide 16-core
• Elegantly simple scalability
• Intelligent Threads
• Utilizes more threads when workloads benefit
• Intelligent energy optimization with EnergyScale Technology
• Boosts frequency for more performance
• High Performance Computing acceleration (AltiVec SIMD
acceleration)
• Execute up to eight single-precision or double-precision
floating point operations per clock cycle per core
• Flexibility and Choice
• Supports AIX, i and Linux operating systems
• Consolidate all three on a single platform
• Supports multiple BladeCenter chassis
.
105
4, 8 or 16 cores
Single or Double
Wide
3.0GHz POWER7
Up to 256GB of
Memory
Relative Performance
New Power Blades are
better than Sun CMT blades
in every important
performance category
5.00
4.00
3.00
2.00
1.00
0.00
Specjbb2005
Power 702
SPECint_rate2006
Sun T6340
Relative Performance Density
• 2.4x to >3.0x better
performance per blade, per
core, and per socket
• 2.2x to >3.9x better
performance per rack unit
• 1.6x to 3.0x better
performance per Watt
4.00
3.00
2.00
1.00
0.00
Specjbb2005
Power 702
SPECint_rate2006
Sun T6340
Relative Energy Efficiency
3.00
2.50
2.00
1.50
1.00
0.50
0.00
Specjbb2005
Power 702
SPECint_rate2006
Sun T6340
Power Blades run faster and cost less
than other UNIX blades
Reinforces why Power Blades are the most popular blades for UNIX
•
Comparison to HP BL860c i2
– PS702 has > 3X performance
2 socket blade performance comparison
POWER7 based blades vs Itanium 9300 based blades
600
500
400
– PS702 P/P is even better
300
200
100
0
SPECint_rate2006
SPECfp_rate2006
PS702
BL660c i2
Estimated HW Price/Performance for benchmark configurations
Lower is better
The Intel Itanium is tottering towards death, analyst reckons
C Shanti | Thu 26th Nov 2009, 10:56 am
http://www.tgdaily.com/hardware-features/44828-the-intelitanium-is-tottering-towards-death-analyst-reckons
300
200
A report from senior analyst Jon Peddie suggests that Intel's 64
bit flagship microprocessor, the Itanium, is dead in the water.
So is it a turkey?
100
0
SPECint_rate2006
SPECfp_rate2006
PS702 BL660c i2
See substantiation chart for sources & benchmark detail
IBM Power Blades Deliver Lower TCA than HP x86 blade solution
At equal capacity for a full BladeCenter H Chassis with 7 two socket (16-core) PS702
blades compared to a full HP C7000 Blade Chassis with 16 two socket (12-core) HP
BL460c G6 blades leveraging the higher utilization and virtualization efficiency
capabilities of Power Blades.
39% lower TCA with 56% less blades
HP Solution
US$347,271
IBM Solution
US$213,053
See Lower TCA chart for sources and substantiation
BladeCenter PS Blade Overview
Enhances most popular blades for UNIX* with 3 New Offerings!
IBM BladeCenter PS700 Express
IBM BladeCenter PS701 Express
IBM BladeCenter PS702 Express
POWER7
4-Core (1 Socket x 4 Cores per blade)
Single Wide
POWER7
8-core (1 Socket x 8 Cores per blade)
Single Wide
POWER7
16-core (1 Socket x 8 Cores per blade)
Double Wide
4GB to 64GB DDR3 (Chipkill)
4GB@1066MHz, 8GB@800MHz
4GB to 128GB DDR3 (Chipkill)
4GB@1066MHz, 8GB@800MHz
4GB to 256GB DDR3 (Chipkill)
4GB@1066MHz, 8GB@800MHz
0-2 SAS disk
0-1 SAS disk
0-2 SAS disk
1 PCI-E CIOv Expansion Card
1 PCI-E CFFh ExpansionCard
1 PCI-E CIOv Expansion Card
1 PCI-E CFFh ExpansionCard
2 PCI-E CIOv Expansion Card
2 PCI-E CFFh ExpansionCard
Integrated Features
Keyboard, Video and Mouse
Dual Port 1Gb Ethernet
SAS Controller
USB
Keyboard, Video and Mouse
Dual Port 1Gb Ethernet
SAS Controller
USB
Keyboard, Video and Mouse
Quad Port 1Gb Ethernet
SAS Controller
USB
Scalability Support
Architecture
Memory
DASD / Bays
Expansion Card Slots
No
Yes – Factory or Customer Upgrade
Yes – Factory or Customer Upgrade
Fibre Support
Yes (via BladeCenter Chassis)
Yes (via BladeCenter Chassis)
Yes (via BladeCenter Chassis)
Redundant Power
Yes (via BladeCenter Chassis)
Yes (via BladeCenter Chassis)
Yes (via BladeCenter Chassis)
Redundant Cooling
Yes (via BladeCenter Chassis)
Yes (via BladeCenter Chassis)
Yes (via BladeCenter Chassis)
Service Processor
FSP1 (IPMI, SOL)
FSP1 (IPMI, SOL)
FSP1 (IPMI, SOL)
IBM PowerVM (optional Editions)
IBM PowerVM (optional Editions)
IBM PowerVM (optional Editions)
IBM Director and CSM
IBM EnergyScale Technology
IBM Director and CSM
IBM EnergyScale Technology
IBM Director and CSM
IBM EnergyScale Technology
AIX, i, Linux
AIX, i, Linux
AIX, i, Linux
BCE, BCH*, BCHT, BCT, BCS*
BCH*, BCHT, BCS*
BCH*, BCHT, BCS*
* In Power Systems Channel
* In Power Systems Channel
* In Power Systems Channel
Virtualization
Systems Management
OS Support
BladeCenter Chassis
Support
* IDC 4Q2009 Server Tracker RISC/Itanium blades
Performance &
Virtualization
versus the
competition
Power Systems Virtualization for Oracle
– Tier Consolidation & Virtualization –
Dynamically Resizable
8
Cores
11Core
Cores
Virtual
I/O
CUoD
Server
Partition
Int Virt
Linux
Manager
AIX
V5.3
Linux
Oracle10g
Oracle11g
Oracle 11g
Tier Consolidation
AIX
V5.3
Oracle 9i
Storage
Sharing
Ethernet
Sharing
3
24 3
Cores
CoresCores
PowerVM‟s
Linux
WebSphere
WebSphere
WebSphere
WebSphere
WebSphere
Manager
6
Cores
Oracle9i
Oracle 10g
Oracle 10g
Int Virt
Linux
8
Cores
Oracle 10g
Server
Partition
16
Cores
PowerVM‟s
Oracle 11g
1 Core
Cores
Virtual
I/O
Storage
Sharing
Ethernet
Sharing
Virtual LAN
POWER Hypervisor
ISV Pricing on Power 64 core system
Network
Oracle EE: 38 cores
WebSphere: 1920 PVUs
Do not pay for VIO server or CUoD cores
Virtual Network WebSphere to Oracle works at memory speeds
Network
Live Partition Mobility On Oracle Workloads
Reduce impact of planned outages, relocate workloads to enable growth, provision new technology
with no disruption to service
LPAR-1 LPAR-2
LPAR-3
LPAR-4
VIOS
VIOS
Migration
Controller
Migration
Controller
LPAR-1 LPAR-2 LPAR-3 LPAR-4
Oracle
Oracle
Def 1
P P
P P
Def 2
Def 3
P P P P P P
P P
P P P
Def 4
AIX Kernel
AIX Kernel
AIX Kernel
AIX Kernel
Hypervisor
P
P
P PP PP
P P P
PP PP PP
P P P
AIX Kernel
AIX Kernel
AIX Kernel
AIX Kerne
Hypervisor
Ethernet
Partition Mobility Requires:
• POWER6
• AIX 5.3 / 6.1 or Linux
• All resources must be “Virtualized”
•No real resources
• SAN storage environment
•SAN Boot, temp space, same network
SAN
Boot
Data
Partition Mobility Steps
Validation
Copy memory pages
Host to target systems
Transfer
Turn off Host resources
Activate Target resources
The number of Oracle licenses needed does not change before and after the migration
Customer Shared Pool
More SAP performance than any 8-socket
system in the industry
Comparable to a 128-core, 32-socket Sun M9000
15,600
SAP users on SAP SD 2 Tier
Power 750 Express with DB2
8-core
Sun Fire X4270
Xeon 5500
2-sockets
24-core
32-core
32-core
HP DL585 Sun T5440 Power 750
AMD
4-sockets
48-core
48-core
128-core
HP DL785 Sun x4640 Sun M9000
AMD
AMD
8-sockets
BSee SAP Benchmarks chart for detail or SAP website
est SAP 2-Tier Results for 2, 4 , 8 and 16 sockets.
32-sockets
The most energy efficient 4-socket system on the planet
The first Energy Star certified RISC system
Power 750
Most energy efficient systems
Performance Per Watt
Itanium
HP rx6600
11
5
SPARC Sun
T5440
x86
HP DL585
POWER7
Power 750
with PowerVM
Power 750 Delivers Superior
Performance than HP Integrity Entry,
Midrange and High End Servers
• More than 10X performance than 4-socket HP
Integrity rx6600 server
• 28% better performance than 64-core HP
Integrity Superdome
IBM Power 750 Express
Performance
32 cores
64 cores
32 cores
8 cores
Power 750 HP rx6600
16 cores
HP rx7640 HP rx8640
HP
Superdome
See Power 750 Performance and Efficiency compared to HP Integrity servers
for substantiation detail.
Source: SPECiint_rate2006. For the latest SPEC benchmark results
POWER7 means more SAP Throughput
 SD 2-Tier ERP tests* show on Power 750 show new levels of
throughput
– Over 7X better per processor throughput than Sun SPARC M9000
– Over 3X better per processor throughput than Sun SPARC T5440
– Over 3X better per processor throughput than HP ProLiant DL585 G6
IBM Power 750 Express
– Over 2X better per processor throughput than Sun X4270
Users per processor/socket
4000
3500
3000
2500
2000
1500
1000
500
0
Pow er 750
SUN M9000
SUN x4270
HP DL585 G6
SUN T5440
Benchmark
3900
3900
Power 750
272
SUN M9000
1180
SUN T5440
1900
SUN x4270
1166
HP DL585 G6
S1
Consolidate HP Integrity rx7640 and 71
Proliant DL380 G5
Linux Servers onto One Power 750 server




Utilize 3% of the previous energy
97% less space – 3+ racks to one Power 750
552 fewer cores reducing per core s/w licensing
Dramatically reduce network and power cabling complexity
HP Integrity rx7640
• 1.6GHz; 10U
• 2,128W
• SPECint_rate2006: 201
IBM Power 750 Express
71 X HP Proliant DL380 G5
• 3.0Ghz; 2U X 62 servers
• 1,193W; Total = 110,949W
• SPECint_rate2006: 36.2
 3.55 GHz; 4U
 1,950W
 SPECint_rate2006: 1060
IBM Power 780 Delivers Performance with Efficiency
780 delivers over 3X the performance per core
of HP
Superdome and Sun M9000
Performance Per Core
Performance Per Watt
780 delivers over 5.8X the performance per watt
of HP Superdome and Sun M9000
HP
Superdome
Sun
M9000
POWER6
POWER7
HP
Superdome
Sun
M9000
POWER6
POWER7
System
Chip/Core/Thread
Date
SPECint_rate2006
Per core
Maximum energy
requirement
(WATTs)
Per KWatt
IBM Power 780 (3.8 GHz POWER7)
8/64/256
February 2010
2530
39.5
6,400
395
IBM Power 570 (4.2 GHz POWER6)
16/32/64
October 2008
832
26
5,600
148
Sun SPARC Enterprise M9000
64/256/512
October 2009
2586
10.1
44,800
58
HP Integrity Superdome (1.6 GHz Itanium 2)
64/128/128
September 2006
1648
12.875
24,392
68
Source: http://www.spec.org IBM results available at announcement. All other results as of 01/27/10. Not all results listed. Performance per KWatt is ca lculated by dividing the performance by the recommended maximum power usage
for site planning. This defines the requirement for the power infrastructure. Actual power used by the systems will be less t han this value for all of the systems. For HP systems, this information is contained in the QuickSpecs available
through www.hp.com. For Sun systems, this information is available through the respective Site Planning Guides available through www.sun.com.
119
Power 750 Express delivers Best of Breed
eBS R12 Order To Cash performance
Delivers the best eBS R12 Order to Cash Medium 2-tier result.
Surpasses 55XX per system, per processor and per core results
64% higher per core and 23% overall against Nehalem 55XX
8-core system.
Template Documentation
IBM Power 750 Express
Power 750 Express delivers Best of Breed
eBS R12 Payroll performance
Delivers the best eBS R12 Payroll Medium 2-tier result
- Surpasses HP per system, per processor and per core
IBM Power 750 Express
6 core Power 750 out performs HP’s 8 core DL380 G6
- 49% higher per core and 12% overall
Oracle eBS R12 Payroll Batch
257,143
250,000
checks per hour
200,000
257,143
229,885
IBM 750 6-core
HP DL380-G6 8-core
198,020
HP DL380-G5 8-core
150,000
114,943
100,000
78,534
42,857
50,000
28,736
0
System Performance
per processor
Template Documentation
per core
19,634
POWER Runs Virtualized Every Time, All the Time
• All Power systems run virtualized all
the time
• VMWare overhead is up to 20%
running OLTP applications
VMWare overhead
5
4
3
2
1
0
2 virtual cpu's
4 virtual cpu's
ESX
8 virtual cpu's
Native
Source: Virtualizing Performance-Critical Database
Applications in VMware® vSphere™ a vailable at
http://www.vmware.com/pdf/Perf_ESX40_Oracle-TPC-Ceval.pdf as of August 21, 2009
Relative virtualized performance per core
Database
SAP 2-tier SD
Power 780 TurboCore
Integer
Power 750
Xeon 5500
Fltg Pt
Xeon 7400
Run in a virtualized environment & the POWER
advantage grows!
OverPOWERing Nehalem
More scalability
Up to 64 lightning fast cores
Avoid scaleout overhead
More performance per socket
Up to eight lightning fast cores
More performance per core
Lightning fast cores
More systems infrastructure – especially in
TurboCore mode
Up to 3.5 X the memory per core
Up to 7 X the memory bandwidth per core
Up to 3.5 X the L2 + L3 cache per core
Less virtualization overhead
TPC-C POWER7 vs. Competition (per
core results)
160000
140000
120000
POWER7
Nehalem-EX
Nehalem-EP
Itanium/2
Opteron
SPARC(Niagara)
100000
80000
60000
40000
20000
0
TPC-C/Core
www.tpc.org
Active Memory
Expansion
Act Mem Exp – Turning a Partition
On or Off
With HMC, check Active Memory
Expansion box and enter
true and max memory
memory expansion factor
To turn off expansion, unclick box
Partition IPL required to turn on or
off
Active Memory Expansion Modeled Statistics:
----------------------Modeled Expanded Memory Size :
8.00 GB
Expansion
Factor
--------1.21
1.31
1.41
1.51
1.61
True Memory
Modeled Size
-------------6.75 GB
6.25 GB
5.75 GB
5.50 GB
5.00 GB
Modeled Memory
Gain
----------------1.25 GB [ 19%]
1.75 GB [ 28%]
2.25 GB [ 39%]
2.50 GB [ 45%]
3.00 GB [ 60%]
CPU Usage
Estimate
----------0.00
0.20
0.35
0.58
1.46
Active Memory Expansion Recommendation:
--------------------The recommended AME configuration for this workload is to configure
the LPAR with a memory size of 5.50 GB and to configure a memory
expansion factor of 1.51. This will result in a memory expansion of
45% from the LPAR's current memory size. With this configuration,
the estimated CPU usage due to Active Memory Expansion is
approximately 0.58 physical processors, and the estimated overall
peak CPU resource required for the LPAR is 3.72 physical processors.
127
5.5 true
8.0 max
Sample SAP ERP Workload Test Results Details at Constant
Throughput: Single Partition (DB + AppServer)
True GB
0%
12%
46%
73%
14.25 12.70 11.25 9.75
Gained GB 0
Total GB
27%
1.55
3.0
4.50
10 5 , 0 0
111% 171%
8.25
6.75
5.25
6.0
7.50
9.0
14.25 14.25 14.25 14.25 14.25 14.25 14.25
Test configs held total memory constant at
14.25 GB, varying mix of real and gained
memory. Number cores constant at 4 cores.
Throughput (% Nominal)
% Expand
Throughput
10 0 , 0 0
95,00
90,00
85,00
No Impact on throughput at
111% memory expansion
80,00
75,00
0%
12 %
27%
46%
73%
111%
17 1%
Mem ory Expansion (%)
CPU Utilization
Response Time
111% more memory for
15% additional CPU
100
CPU Utilization (%)
93
80
75% more memory for
1% additional CPU
60
60
61
61
61
75
61
0 ,8
0 ,6
Minimal impact to response
time at 111% expansion
0 ,4
0 ,2
0 ,0
40
0%
12 %
27%
46%
73%
111%
17 1%
Mem ory Expansion (%)
20
12
8
Response Time (s)
1,0
Your results will vary depending on compressibility of
the data and available CPU resource
0
0%
12%
27%
46%
73%
Memory Expansion (%)
111%
171%
Sample SAP ERP Workload, Single
Partition
With Active Memory Expansion
Without Active
Memory Expansion + AppServer)
(DataBase
Partition utilization
Partition utilization
 Memory: 100% (18 GB true)
 CPU: 88% (12 cores in LPAR) Note: Most of
 Memory: 100% (18 GB)
 CPU: 46% (12 cores in LPAR)
the CPU increase is due to additional work done on
server
Memory capacity is the bottle-neck
 CPU is under-utilized
 Handles 1000 simulated users
Higher throughput enabled with the same
amount of physical memory
 Gain 37% memory capacity
 Handles 1700 simulated users
Max Partition throughput: 99 tps
12-core POWER7 partition
18 GB Memory
18 GB true
.
0 GB expanded
+ 65%
Max Partition Throughput: 166 tps
12-core POWER7 partition
24.7 GB Memory
18 GB true
.
6.7 GB expanded
Expanded Memory
Note: This is an illustrative scenario based on using a sample workload.
This data represents measured results in a controlled lab environment.
Your results may vary.
Active Memory Expansion – Client
Deployment Steps
Planning Tool
60-Day Trial
Deploy into Production
A. Part of AIX 6.1 TL4
B. Calculates data
compressibility &
estimates CPU
overhead due to
Active Memory
Expansion
C. Provides initial
recommendations
A. One-time,
temporarily
enablement
B. Config LPAR based
on planning tool
C. Use AIX tools to
monitor Act Mem Exp
environment
D. Tune based on actual
results
A. Permanently enable
Active Memory
Expansion
B. Deploy workload into
production
C. Continue to monitor
workload using AIX
performance tools
Memory Expansion
130
Actual Results
App. Performance
Estimated Results
Memory Expansion
Performance
3
CPU Utilization
2
CPU Utilization
1
Time
Memory Expansion
POWER7
Related
Announcements
POWER7 Virtualization Support
•Maintain 1 to 10 ratio for Physical cores to
LPARs
 Power 750
 Power 755
 Power 770 / 78:
Up to 160 (320) LPARS
Not Supported
Up to 160 (640) LPARs
•Active Memory Expansion
 Active Memory Expansion compresses in-memory
data to fit more data into memory
• Increases the effective amount of memory capacity for AIX
partitions
 Managed by the OS and hypervisor
• OS compresses and decompress data based on memory
accesses
 Is transparent to applications
134
AIX 6 Editions
• AIX 6 is available in three different editions:
– AIX 6 Standard Edition
• Suitable for most UNIX workloads
• Vertical scalability up to 64 cores
AIX Enterprise
Edition
– AIX 6 Enterprise Edition
• AIX plus enterprise management
• Includes AIX 6 Standard Edition plus
Systems Director Enterprise Edition and
the Workload Partitions Manager for AIX
• Vertical scalability up to 64 cores
AIX Standard
Edition
AIX Express
Edition
– AIX 6 Express Edition
• Lower priced edition targeted a low end servers and
consolidation of smaller workloads on larger servers
• Includes all the functionality of AIX 6 Standard Edition
• Vertical scalability is limited to 4 cores and 8GB of memory per core in a single
partition
• Clients can use multiple AIX Express Edition partitions in a single larger server
•
Clients can mix multiple AIX editions in the same server
AIX Enterprise Edition
AIX Enterprise Edition is a single offering that brings together AIX 6
with key service management capabilities that are designed to:
 Improve availability through access to relevant real-time information
and predictive monitoring to avoid future problems
 Enhance operational efficiency through visualization of resources and
centralized deployment and management of virtualized AIX
environments
 Provide accurate assessment of system resource usage
AIX Enterprise Edition includes:
– AIX 6
– WPAR Manager V2.1
– Systems Director Enterprise Edition
•
•
IBM System Director 6.1.2
Active Energy Manager 4.2
•
•
•
•
•
•
VMControl 2.2 (including Image Management & System Pools)
Network Control 1.1
Transition Manager for HP® SIM
Service and Support Manager 6.1.2
IBM Tivoli Monitoring 6.2.2
Agents: ITM for Energy Mgmt v6.2; VMControl Agent v2.2; Power System
Agents (CEC, AIX Premium, VIOS, HMC) v6.2.1; Systems Director Agent
TADDM v7.2
•
AIX Enterprise Edition Helps you Monitor and Repair
Power Server Systems
 Monitor resources to maintain system
availability
Platform and enterprise system monitoring
Proactive alerts
System pool monitoring
 Analyze system status to find the root cause of
problems more quickly
At-a-glance status of critical systems
Root cause analysis
Enhanced correlation
 Repair or prevent system faults to reduce
service downtime
Automated response and updates
Workload migration
Proactive notification
VMControl Editions: Added Value for PowerVM Clients
VMControl
Express Edition
VMControl
Standard Edition
VMControl
Enterprise Edition
Manage resources
Automate virtual images
Optimize system pools
Create/manage virtual machines
(x86, PowerVM and z/VM)



Virtual machine relocation



Capture/import, create/remove
standardized virtual images


Deploy standard virtual images


Maintain virtual images in a
centralized library


VMControl
Virtualization Capabilities
PowerVM
Create/remove system pools and
manage resources in system pools

Add/remove physical servers
within system pools

More Easily Migrate Linux x86 Applications to Power
Run x86 Linux applications on Power alongside
your AIX, i and Linux on Power applications
Simplifies migration of Linux x86 applications enabling customers
to realize the energy and administration savings of consolidation




Run most existing 32-bit x86 Linux applications with no application changes
Included with the purchase of PowerVM Editions
POWER6 blades through Power 595; POWER7 servers – outlook 2Q2010
developerWorks download: http://www.ibm.com/developerworks/linux/pave/
PowerVM™ Lx86
PowerVM
x86
x86 Linux
x86
Linux App
Linux
App
App
Linux
Linux
Linux
x86 Platforms
x86 Platforms
x86 Platforms
Install and Run

No Porting

No Recompile

No changes
x86
Linux
App
PowerVM
Lx86
POWER
Linux
Application
Linux
AIX
Application
i
Application
AIX
IBM i
Power Systems Platform
140
2009 – 2011 AIX TL Roadmap
10/2009
04/2010
AIX 5.3
10/2010
04/2011
10/2011
POWER7 Hardware Support
TL8
TL9
TL10
TL11
TL11
SP
SP
SP
TL12
AIX 6.1
TL1
TL2
TL3
TL4
TL4
SP
SP
SP
TL5
TL6
TL7
TL8
TL0
SP
Service Pack
POWER7 Support
AIX 7.1
TL1
TL2
Source for full survey on : http://iticcorp.com/blog/2009/07/itic-2009global-server-hardware-server-osreliability-survey-results/
145
IBM i Roadmap
2008
2009
IBM i 6.1
2010
2011
2012
IBM i
Strategy of a major new release of IBM i every two years Next
IBM i
IBM i 6.1.1 IBMSOD
i 7.1
„06
V5R2
„07
„08
„09
„10
„11
„12
„13
„14
„15
„16
IBM i
Upgrade
paths
V5R3
5.4*
6.1*
7.1*
Service
*The projected date for the service of IBM i releases is based on current IBM planning
assumptions. Note that it is IBM‟s current practice to support an IBM i release until the next two
releases have been made available, plus twenty four months. This slide contains information
about IBM‟s plans and directions. Such plans are subject to change without notice.
Partition Mobility
POWER6
POWER6+
POWER7
Binary Compatibility between POWER6 and POWER7
Leverage POWER6 / POWER6+ Compatibility Mode
Migrate partitions between POWER6 and POWER7 Servers
 Forward and Backward
New DAT320 Tape Drive
Up to
100%
more
Up to
70%
faster
Up to
50%
less
DAT160
baseline
DAT320
Capacity
DAT320
Speed
DAT320
Energy
Only
30%
more
DAT320
Price
• Placed in POWER7 750 (or POWER6 520/550) CEC HH bay
–Available 19 Feb for Power 750, and 16 March for
Power 520/550
• Reads/writes DAT160, but does not read/write DAT72
• Requires AIX 5.3, IBM i 6.1, SUSE 10, Red Hat 4.8
(or later)
POWER7
Upgrades
POWER7 System Upgrades – You Can Get there.
Upgrades from POWER6 and POWER6+
All existing Power 570 systems can upgrade to POWER7
POWER6+ 570/32
4.2 GHz
Power 780
3.8 GHz / 4.1 GHz
POWER6+ 570
9179-MHB
4.4, 5.0 GHz
POWER6 570
Power 770
3.5 GHz
3.5, 4,2, 4.7 GHz
9117-MMA
9117-MMB
 POWER6 upgrades to POWER7
 POWER6+ upgrades to POWER7
 Power 570/32 upgrades to POWER7
I/O Upgrade Considerations
• All the newer IBM I/O drawers (12X), disk, SSD and PCI adapters used on POWER6
supported on POWER7 servers
– May need to move 3.5-inch SAS drives and PCI-X adapters
• Older I/O on POWER6 servers, but not on POWER7 servers
– RIO/HSL I/O drawers
– SCSI disk smaller than 69GB or SCSI drives slower than 15k rpm
– QIC tape drives
– IOPs and IOP-based PCI adapters (IBM i)
2749, 5702, 5712, 2757, 5581, 5591, 2790, 5580, 5590, 5704, 5761, 2787, 5760,
4801, 4805, 3709, 4746, 4812, 4813
– Older LAN adapters: #5707, 1984, 5718, 1981, 5719, 1982
– Older SCSI adapters: #5776, 5583, 5777
– Telephony adapter: #6412
–See planning web page
www.ibm.com/systems/power/hardware/sod2.html
Power SODs for Upgrades
Definition “upgrade” as a model change keeping same serial number
• Power 595
– SOD issued in 2009 & augmented 2010
• Power 570
– SOD issued in 2009
– Upgrades announced Feb 2010, shipping June 2010
– Built on unified structure, 9406-MMA must first convert to 9117-MMA
• Power 575 and 560 and 550
– SODs not issued
• Power 520
– SOD issued February 2010 with plans to be delivered in 2010
– For Power 520 (8203-E4A) 2-core or 4-core servers
– Insight: POWER5 520 to POWER6 520 upgrades did not have savings in the
hardware. Client savings were in easy license transfer (including IBM i), documented
upgrade procedures for upgrading, and perhaps easier leasing/depreciation structure
continuation
POWER7 High-End Statement of Direction
• IBM plans to deliver a new high-end server in
2010 with up to 256 POWER7 processor cores
• Designed to operate within the same physical
footprint and energy envelope of the current 64core Power 595 server.
• High-Voltage DC Power option
• IBM also plans to provide an upgrade path from
the current IBM Power 595 server with 12X I/O to
the new POWER7 high-end server.
• Enterprises with multiple systems leveraging
PowerVM Live Partition Mobility may use this
function to maintain application availability
during the upgrade process.
Power Solid State Drives (SSD)
Update
• Feb 2010
–SSD support in Power 750, 755, 770, 780 system
units
• Dec 2009 HUGE price action
–48% price reduction (plus 30% maintenance
reduction)
–Aligned SSD with memory price reduction
–Some countries deferred price action to 2010
• Oct/Nov 2009
–“Enterprise class vs. consumer SSD” white paper
–IBM i analysis tool
–SSD configuration & performance enhancements
–AIX analysis paper by Dan Braden
–#1 SCP-1 benchmark - 595 + 84 SSD
48%