Download moises
Document related concepts
Transcript
INSTITUTO TECNOLOGICO SUPERIOR DE ALVARADO INGENIERÍA EN SISTEMAS COMPUTACIONALES Materia: Taller De Sistemas operativos Alumno: Moises Uscanga Ramirez Semestre-Grupo: 5to. Producto Académico: MEDIOS DE TRANSMISIÓN Y SUS CARACTERISTICAS Docente: MTI. DIONISIO PEREZ PEREZ ALVARADO, VER. SEPTIEMBRE 2013 1 INTRODUCCIÓN . Los medios guiados son aquellos en los que el canal por el que se transmiten las señales son medios físicos, es decir, por medio de un cable. En este tipo de medios se emplea un conductor de un dispositivo a otro, limitando la propagación de la señal al interior del conductor. Los medios no guiados son aquellos que no confinan señales mediante ningún tipo de cable, estas señales se propagan mediante un medio ya sea al aire o al vacío. La transmisión y recepción de información se lleva a cabo por medio de antenas, la de transmisión la antena irradia energía electromagnética en el medio mientras que la de recepción la antena capta las ondas electromagnéticas del medio que lo rodea. El siguiente trabajo tiene como finalidad comparar los medios guiados y no guiados que más comúnmente se emplean en las redes de computadoras actuales. Sus características, ventajas, desventajas y otros puntos importantes. 2 Unidad II Medios de Transmisión y sus Características 2.1 Guiados: Par Trenzado, Coaxial y Fibra Óptica. DEFINICIÓN El medio de transmisión constituye el canal que permite la transmisión de información entre dos terminales en un sistema de transmisión. Las transmisiones se realizan habitualmente empleando ondas electromagnéticas que se propagan a través del canal. A veces el canal es un medio físico y otras veces no, ya que las ondas electromagnéticas son susceptibles de ser transmitidas por el vacío. ANCHO DE BANDA Para señales analógicas, el ancho de banda es la longitud, medida en Hz, del rango de frecuencias en el que se concentra la mayor parte de la potencia de la señal. Puede ser calculado a partir de una señal temporal mediante el análisis de Fourier. También son llamadas frecuencias efectivas las pertenecientes a este rango. En conexiones a Internet el ancho de banda es la cantidad de información o de datos que se puede enviar a través de una conexión de red en un período dado. El ancho de banda se indica generalmente en bits por segundo (bps), kilobits por segundo (Kbps), o megabits por segundo (Mbps). 3 Es común denominar ancho de banda digital a la cantidad de datos que se pueden transmitir en una unidad de tiempo. Por ejemplo, una línea ADSL de 256 kbps puede, teóricamente, enviar 256000 bits (no bytes) por segundo. Esto es en realidad la tasa de transferencia máxima permitida por el sistema, que depende del ancho de banda analógico, de la potencia de la señal, de la potencia de ruido y de la codificación de canal. Un ejemplo de banda estrecha es la realizada a través de una conexión telefónica, y un ejemplo de banda ancha es la que se realiza por medio de una conexión DSL, microondas, cable módem o T1. Cada tipo de conexión tiene su propio ancho de banda analógico y su tasa de transferencia máxima. El ancho de banda y la saturación redil son dos factores que influyen directamente sobre la calidad de los enlaces. El rango de frecuencia que deja a un canal pasar satisfactoriamente se expresa en Hz. Bw=∆f=fcs (frecuencia de corte superior) – fci (frecuencia de corte inferior) b. Interferencia electromagnética La interferencia electromagnética es la perturbación que ocurre en cualquier circuito, componente o sistema electrónico causado por una fuente externa al mismo. También se conoce como EMI por sus siglas en inglés (ElectroMagnetic Interference), Radio Frequency Interference o RFI. Esta perturbación puede interrumpir, degradar o limitar el rendimiento de ese sistema. La fuente de la interferencia puede ser cualquier objeto, ya sea artificial o natural, que posea corrientes eléctricas que varíen rápidamente, como un circuito eléctrico, el Sol o las auroras boreales. c. Campo magnético inducido La circulación de una corriente eléctrica a través de un conductor, genera un campo magnético entorno a dicho conductor. De igual forma, cualquier campo 4 magnético entorno a un conductor puede inducir una corriente eléctrica en este. Eso podría considerarse una interferencia. Para evitar este fenómeno se utilizan cables eléctricos apantallados. 5 IMPEDANCIA CARACTERÍSTICA Se denomina impedancia característica de una línea de transmisión a la relación existente entre la diferencia de potencial aplicada y la corriente absorbida por la línea en el caso hipotético de que esta tenga una longitud infinita, o cuando aún siendo finita no existen reflexiones. En el caso de líneas reales, se cumple que la impedancia de las mismas permanece inalterable cuando son cargadas con elementos, generadores o receptores, cuya impedancia es igual a la impedancia característica. La impedancia característica es independiente de la frecuencia de la tensión aplicada y de la longitud de la línea, por lo que esta aparecerá como una carga resistiva y no se producirán reflexiones por desadaptación de impedancias, cuando se conecte a ella un generador con impedancia igual a su impedancia característica. De la misma forma, en el otro extremo de la línea esta aparecerá como un generador con impedancia interna resistiva y la transferencia de energía será máxima cuando se le conecte un receptor de su misma impedancia característica. No se oculta, por tanto, la importancia de que todos los elementos que componen un sistema de transmisión presenten en las partes conectadas a la línea impedancias idénticas a la impedancia característica de esta, para que no existan ondas reflejadas y el rendimiento del conjunto sea máximo. Para evitar reflexiones y asegurarnos que se transmite toda la potencia posible: ZS = Z0 = ZL 6 d. Reflexión. Onda estacionaria. ROE (SWR) Cuando se produce una transmisión de señales en un medio de transmisión, la señal que transmitimos desde la fuente (emisor) a la carga (receptor o medio de transmisión) la llamamos onda incidente. Cuando las impedancias del sistema están adaptadas ZS = Z0 = ZL, toda la onda incidente se transmite a 7 la carga, pero cuando no existe esa adaptación, una parte de la onda incidente se transmite y otra parte se refleja y vuelve en sentido contrario a esta, tomando el nombre de onda reflejada. La suma de las dos ondas genera lo que se llama una onda estacionaria. En transmisión de ondas de radio, las ondas estacionarias en las líneas de transmisión son sumamente peligrosas para la integridad física de los componentes. Un aparato, el ROE-metro, mide el porcentaje de la onda incidente que es reflejada. En el caso ideal en que se estableciera una onda estacionaria en la línea de transmisión, el transmisor terminaría por destruirse. Una ROE (Relación de Onda Estacionaria) de 1,5 equivale a una reflexión de 4% de la onda incidente, y se admite que es el máximo que un transmisor de 100 Watts a transistores puede soportar sin sufrir daños. En cambio, los transmisores a válvulas son menos sensibles a las ondas estacionarias. EFECTOS DE ONDA ESTACIONARIA: Puente de Tacoma http://www.youtube.com/watch?v=jzczJXSxnw&feature=fvwrel f. Atenuación del cable La atenuación es la pérdida de señal que aprecia cuando se 8 compara la señal a la salida del cable con respecto a la entrada. Depende del medio de transmisión y de la longitud de este. Se mide en dB. 9 EL PAR TRENZADO El par trenzado consiste en un par de hilos de cobre conductores cruzados entre sí, con el objetivo de reducir el ruido de diafonía. A mayor número de cruces por unidad de longitud, mejor comportamiento ante el problema de diafonía. Existen dos tipos de par trenzado: *Protegido: Shielded Twisted Pair (STP) *No protegido: Unshielded Twisted Pair (UTP) Las aplicaciones principales en las que se hace uso de cables de par trenzado son: Bucle de abonado: Es el último tramo de cable existente entre el teléfono de un abonado y la central a la que se encuentra conectado. Este cable suele ser UTP Cat.3 y en la actualidad es uno de los medios más utilizados para transporte de banda ancha, debido a que es una infraestructura que está implantada en el 100% de las ciudades. Redes LAN: En este caso se emplea UTP Cat.5 o Cat.6 para transmisión de datos. Consiguiendo velocidades de varios centenares de Mbps. Un ejemplo de este uso lo constituyen las redes 10/100/1000BASE-T. Para conectar el cable UTP a los distintos dispositivos de red se usan unos conectores especiales, denominados RJ-45 Velocidades de transmisión de datos: Categoría1 Voz (Cable de teléfono) Categoría 2 Datos a 4 Mbps (LocalTalk) Categoría 3 Datos a 10 Mbps (Ethernet) 1 0 Categoría 4 Datos a 20 Mbps/16 Mbps Token Ring 1 1 EL CABLE COAXIAL El cable coaxial se compone de un hilo conductor, llamado núcleo, y una malla externa separados por un dieléctrico o aislante El cable coaxial es quizá el medio de transmisión más versátil, por lo que está siendo cada vez más utilizado en una gran variedad de aplicaciones. Se usa para trasmitir tanto señales analógicas como digitales. El cable coaxial tiene una respuesta en frecuencia superior a la del par trenzado, permitiendo por tanto mayores frecuencias y velocidades de transmisión. Por construcción el cable coaxial es mucho menos susceptible que el par trenzado tanto a interferencias como a diafonía. Las aplicaciones más importantes son: Distribución de televisión Telefonía a larga distancia Conexión con periféricos a corta distancia Redes de área local Debido a la necesidad de manejar frecuencias cada vez más altas y a la digitalización de las transmisiones, en años recientes se ha sustituido paulatinamente el uso del cable coaxial por el de fibra óptica, en particular para distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior. LA FIBRA ÓPTICA La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con 1 2 un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED. 1 3 Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio o cable. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagnéticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión. Características La fibra óptica es una guía de ondas dieléctrica que opera a frecuencias ópticas. Cada filamento consta de un núcleo central de plástico o cristal (óxido de silicio y germanio) con un alto índice de refracción, rodeado de una capa de un material similar con un índice de refracción ligeramente menor. Cuando la luz llega a una superficie que limita con un índice de refracción menor, se refleja en gran parte, cuanto mayor sea la diferencia de índices y mayor el ángulo de En el interior de una fibra óptica, la luz se va reflejando contra las paredes en incidencia, se habla entonces de reflexión ángulos muy abiertos, de tal forma que prácticamente avanza por su centro. De interna total. este modo, se pueden guiar las señales luminosas sin pérdidas por largas distancias. A lo largo de toda la creación y desarrollo de la fibra óptica, algunas de sus características han ido cambiando para mejorarla. Las características más destacables de la fibra óptica en la actualidad son: material que las cubiertas convencionales. Uso dual (interior y exterior): La resistencia al agua y emisiones ultravioleta, la cubierta resistente y el funcionamiento ambiental extendido de la fibra óptica contribuyen a una mayor confiabilidad durante el tiempo de vida de la fibra. la humedad en el interior de la fibra con múltiples capas de protección 1 4 alrededor de ésta, lo que proporciona a la fibra, una mayor vida útil y confiabilidad en lugares húmedos. menor diámetro posible se consigue una más rápida y más fácil instalación, donde el cable debe enfrentar dobleces agudos y espacios estrechos. Se ha llegado a conseguir un cable con 72 fibras de construcción súper densa cuyo diámetro es un 50% menor al de los cables convencionales. 1 5 Funcionamiento Los principios básicos de su funcionamiento se justifican aplicando las leyes de la óptica geométrica, principalmente, la ley de la refracción (principio de reflexión interna total) y la ley de Snell. Su funcionamiento se basa en transmitir por el núcleo de la fibra un haz de luz, tal que este no atraviese el revestimiento, sino que se refleje y se siga propagando. Esto se consigue si el índice de refracción del núcleo es mayor al índice de refracción del revestimiento, y también si el ángulo de incidencia es superior al ángulo limite. Ventajas Una banda de paso muy ancha, lo que permite flujos muy elevados (del orden del Ghz). Pequeño tamaño, por tanto ocupa poco espacio. Gran flexibilidad, el radio de curvatura puede ser inferior a 1 cm, lo que facilita la instalación enormemente. Gran ligereza, el peso es del orden de algunos gramos por kilómetro, lo que resulta unas nueve veces menos que el de un cable convencional. Inmunidad total a las perturbaciones de origen electromagnético, lo que implica una calidad de transmisión muy buena, ya que la señal es inmune a las tormentas, chisporroteo... Gran seguridad: la intrusión en una fibra óptica es fácilmente detectable por el debilitamiento de la energía luminosa en recepción, además, no radia nada, lo que es particularmente interesante para aplicaciones que requieren alto nivel de confidencialidad. No produce interferencias. Insensibilidad a los parásitos, lo que es una propiedad principalmente utilizada en los medios industriales fuertemente perturbados (por ejemplo, en los túneles del metro). Esta propiedad también permite la coexistencia por los mismos conductos de cables ópticos no metálicos con los cables de energía eléctrica. Atenuación muy pequeña independiente de la frecuencia, lo que permite salvar distancias importantes sin elementos activos intermedios. Puede proporcionar comunicaciones hasta los 70 km. antes de que sea necesario regenerar la señal, además, puede extenderse a 150 km. utilizando amplificadores láser. Gran resistencia mecánica (resistencia a la tracción, lo que facilita la instalación). Resistencia al calor, frío, corrosión. Facilidad para localizar los cortes gracias a un proceso basado en la telemetría, lo que permite detectar rápidamente el lugar y posterior reparación de la avería, simplificando la labor de mantenimiento. Con un coste menor respecto al cobre. Desventajas A pesar de las ventajas antes enumeradas, la fibra óptica presenta una serie de desventajas frente a otros medios de transmisión, siendo las más relevantes las siguientes: 1 6 La alta fragilidad de las fibras. Necesidad de usar transmisores y receptores más caros. Los empalmes entre fibras son difíciles de realizar, especialmente en el campo, lo que dificulta las reparaciones en caso de ruptura del cable. No puede transmitir electricidad para alimentar repetidores intermedios. La necesidad de efectuar, en muchos casos, procesos de conversión eléctrica-óptica. La fibra óptica convencional no puede transmitir potencias elevadas.2 No existen memorias ópticas. 1 7 La fibra óptica no transmite energía eléctrica, esto limita su aplicación donde el terminal de recepción debe ser energizado desde una línea eléctrica. La energía debe proveerse por conductores separados. Las moléculas de hidrógeno pueden difundirse en las fibras de silicio y producir cambios en la atenuación. El agua corroe la superficie del vidrio y resulta ser el mecanismo más importante para el envejecimiento de la fibra óptica. Incipiente normativa internacional sobre algunos aspectos referentes a los parámetros de los componentes, calidad de la transmisión y pruebas. Tipos Las diferentes trayectorias que puede seguir un haz de luz en el interior de una fibra se denominan modos de propagación. Y según el modo de propagación tendremos dos tipos de fibra óptica: multimodo y monomodo. Tipos de fibra óptica. a. Fibra multimodo Una fibra multimodo es aquella en la que los haces de luz pueden circular por más de un modo o camino. Esto supone que no llegan todos a la vez. Una fibra multimodo puede tener más de mil modos de propagación de luz. Las fibras multimodo se usan comúnmente en aplicaciones de corta distancia, menores a 1 km, es simple de diseñar y económico. b. Fibra monomodo Una fibra monomodo es una fibra óptica en la que sólo se propaga un modo de luz. Se logra reduciendo el diámetro del núcleo de la fibra hasta un tamaño (8,3 a 10 micrones) que sólo permite un modo de propagación. Su transmisión es paralela al eje de la fibra. A diferencia de las fibras multimodo, las fibras monomodo permiten alcanzar grandes distancias (hasta 400 km máximo, mediante un láser de alta intensidad) y transmitir elevadas tasas de información (decenas de Gb/s). 1 8 Tipos según su diseño De acuerdo a su diseño, existen dos tipos de cable de fibra óptica 1 9 a. Cable de estructura holgada Es un cable empleado tanto para exteriores como para interiores que consta de varios tubos de fibra rodeando un miembro central de refuerzo y provisto de una cubierta protectora. Cada tubo de fibra, de dos a tres milímetros de diámetro, lleva varias fibras ópticas que descansan holgadamente en él. Los tubos pueden ser huecos o estar llenos de un gel hidrófugo que actúa como protector antihumedad impidiendo que el agua entre en la fibra. El tubo holgado aísla la fibra de las fuerzas mecánicas exteriores que se ejerzan sobre el cable. Su núcleo se complementa con un elemento que le brinda resistencia a la tracción que bien puede ser de varilla flexible metálica o dieléctrica como elemento central o de hilaturas de Aramida o fibra de vidrio situadas periféricamente. b. Cable de estructura ajustada Es un cable diseñado para instalaciones en el interior de los edificios, es más flexible y con un radio de curvatura más pequeño que el que tienen los cables de estructura holgada. Contiene varias fibras con protección secundaria que rodean un miembro central de tracción, todo ello cubierto de una protección exterior. Cada fibra tiene una protección plástica extrusionada directamente sobre ella, hasta alcanzar un diámetro de 900 µm rodeando al recubrimiento de 250 µm de la fibra óptica. Esta protección plástica además de servir como protección adicional frente al entorno, también provee un soporte físico que serviría para reducir su coste de instalación al permitir reducir las bandejas de empalmes. Componentes de la fibra óptica Dentro de los componentes que se usan en la fibra óptica caben destacar los siguientes: los conectores, el tipo de emisor del haz de luz, los conversores de luz, etc. Transmisor de energía óptica. Lleva un modulador para transformar la señal electrónica entrante a la frecuencia aceptada por la fuente luminosa, la cual convierte la señal electrónica (electrones) en una señal óptica (fotones) que se emite a través de la fibra óptica. Detector de energía óptica. Normalmente es un fotodiodo que convierte la señal óptica recibida en electrones (es necesario también un amplificador para generar la señal) Su componente es el silicio y se conecta a la fuente luminosa y al detector de energía óptica. Dichas conexiones requieren una tecnología compleja. Tipos de conectores Estos elementos se encargan de conectar las líneas de fibra a un elemento, ya puede ser un transmisor o un receptor. Los tipos de conectores disponibles son muy variados, entre los que podemos encontrar se hallan los siguientes: 2 0 datos. FC, que se usa en la transmisión de datos y en las telecomunicaciones. FDDI, se usa para redes de fibra óptica. LC y MT-Array que se utilizan en transmisiones de alta densidad de SC y SC-Dúplex se utilizan para la transmisión de datos. ST o BFOC se usa en redes de edificios y en sistemas de seguridad. 2 1 Emisores del haz de luz Estos dispositivos se encargan de convertir la señal eléctrica en señal luminosa, emitiendo el haz de luz que permite la transmisión de datos, estos emisores pueden ser de dos tipos: LEDs. Utilizan una corriente de 50 a 100 mA, su velocidad es lenta, solo se puede usar en fibras multimodo, pero su uso es fácil y su tiempo de vida es muy grande, además de ser económicos. Lasers. Este tipo de emisor usa una corriente de 5 a 40 mA, son muy rápidos, se puede usar con los dos tipos de fibra, monomodo y multimodo, pero por el contrario su uso es difícil, su tiempo de vida es largo pero menor que el de los LEDs y también son mucho más costosos. Conversores luz-corriente eléctrica Este tipo de dispositivos convierten las señales luminosas que proceden de la fibra óptica en señales eléctricas. Se limitan a obtener una corriente a partir de la luz modulada incidente, esta corriente es proporcional a la potencia recibida, y por tanto, a la forma de onda de la señal moduladora. Se fundamenta en el fenómeno opuesto a la recombinación, es decir, en la generación de pares electrónhueco a partir de los fotones. El tipo más sencillo de detector corresponde a una unión semiconductora P-N. Las condiciones que debe cumplir un fotodetector para su utilización en el campo de las comunicaciones, son las siguientes: La corriente inversa (en ausencia de luz) debe ser muy pequeña, para así poder detectar señales ópticas muy débiles (alta sensibilidad). Rapidez de respuesta (gran ancho de banda). El nivel de ruido generado por el propio dispositivo ha de ser mínimo. Hay dos tipos de detectores: los fotodiodos PIN y los de avalancha APD. Detectores PIN: Su nombre viene de que se componen de una unión P-N y entre esa unión se intercala una nueva zona de material intrínseco (I), la cual mejora la eficacia del detector. Se utiliza principalmente en sistemas que permiten una fácil discriminación entre posibles niveles de luz y en distancias cortas. 2 2 Detectores APD: Los fotodiodos de avalancha son fotodetectores que muestran, aplicando un alto voltaje en inversa, un efecto interno de ganancia de corriente (aproximadamente 100), debido a la ionización de impacto (efecto avalancha). El mecanismo de estos detectores consiste en lanzar un electrón a gran velocidad (con la energía suficiente), contra un átomo para que sea capaz de arrancarle otro electrón. 2 3 Estos detectores se pueden clasificar en tres tipos: de silicio: presentan un bajo nivel de ruido y un rendimiento de hasta el 90% trabajando en primera ventana. Requieren alta tensión de alimentación (200-300V). de germanio: aptos para trabajar con longitudes de onda comprendidas entre 1000 y 1300 nm y con un rendimiento del 70%. de compuestos de los grupos III y V. Cables de fibra óptica Sección de un cable de fibra óptica. óptica. Conectores de cable de fibra Un cable de fibra óptica está compuesto por un grupo de fibras ópticas por el cual se transmiten señales luminosas. Las fibras ópticas comparten su espacio con hiladuras de aramida que le confieren la necesaria resistencia a la tracción. Los cables de fibra óptica proporcionan una alternativa sobre los coaxiales en la industria de la electrónica y las telecomunicaciones. Así, un cable con 8 fibras ópticas tiene un tamaño bastante más pequeño que los utilizados habitualmente, puede soportar las mismas comunicaciones que 60 cables de 1623 pares de cobre o 4 cables coaxiales de 8 tubos, todo ello con una distancia entre repetidores mucho mayor. Por otro lado, el peso del cable de fibra óptica es muchísimo menor que el de los coaxiales, ya que una bobina del cable de 8 fibras antes citado puede pesar del orden de 30 kg/km, lo que permite efectuar tendidos de 2 a 4 km de una sola vez, mientras que en el caso de los cables de cobre no son prácticas distancias superiores a 250 - 300 m. La “fibra óptica” no se suele emplear tal y como se obtiene tras su proceso de creación (tan sólo con el revestimiento primario), sino que hay que dotarla de más elementos de refuerzo que permitan su instalación sin poner en riesgo al vidrio que la conforma. Es un proceso difícil de llevar a cabo, ya que el vidrio es quebradizo y poco dúctil. Además, la sección de la fibra es muy pequeña, por lo 2 4 que la resistencia que ofrece a romperse es prácticamente nula. Es por tanto necesario protegerla mediante la estructura que denominamos cable. Las funciones del cable Las funciones del cable de fibra óptica son varias. Actúa como elemento de protección de la(s) fibra(s) óptica(s) que hay en su interior frente a daños y fracturas que puedan producirse tanto en el momento de su instalación como a lo largo de la vida útil de ésta. Además, proporciona suficiente consistencia 2 5 mecánica para que pueda manejarse en las mismas condiciones de tracción, compresión, torsión y medioambientales que los cables de conductores. Para ello incorporan elementos de refuerzo y aislamiento frente al exterior. Instalación y explotación Referente a la instalación y explotación del cable, nos encontramos frente a la cuestión esencial de qué tensión es la máxima que debe admitirse durante el tendido para que el cable no se rompa y se garantice una vida media de unos 20 años. Técnicas de empalme: Los tipos de empalmes pueden ser: Empalme mecánico con el cual se pueden provocar pérdidas del orden de 0.5 dB. Empalme con pegamentos con el cual se pueden provocar pérdidas del orden de 0.2 dB. Empalme por fusión de arco eléctrico con el cual se logran pérdidas del orden de 0.02 dB. Elementos y diseño del cable de fibra óptica La estructura de un cable de fibra óptica dependerá en gran medida de la función que deba desempeñar esa fibra. A pesar de esto, todos los cables tienen unos elementos comunes que deben ser considerados y que comprenden: el revestimiento secundario de la fibra o fibras que contiene; los elementos estructurales y de refuerzo; la funda exterior del cable, y las protecciones contra el agua. Existen tres tipos de “revestimiento secundario”: “Revestimiento ceñido”: Consiste en un material (generalmente plástico duro como el nylon o el poliéster) que forma una corona anular maciza situada en contacto directo con el revestimiento primario. Esto genera un diámetro externo final que oscila entre 0’5 y 1 mm. Esto proporciona a la fibra una protección contra microcurvaturas, con la salvedad del momento de su montaje, que hay que vigilar que no las produzca ella misma. “Revestimiento holgado hueco”: Proporciona una cavidad sobredimensionada. Se emplea un tubo hueco extruido (construido pasando un metal candente por el plástico) de material duro, pero flexible, con un diámetro variable de 1 a 2 mm. El tubo aísla a la fibra de vibraciones y variaciones mecánicas y de temperatura externas. “Revestimiento holgado con relleno”: El revestimiento holgado anterior se puede rellenar de un compuesto resistente a la humedad, con el objetivo de impedir el paso del agua a la fibra. Además ha de ser suave, dermatológicamente inocuo, fácil de extraer, autorregenerativo y estable para un rango de temperaturas que oscila entre los ¬ 55 y los 85 °C Es frecuente el empleo de derivados del petróleo y compuestos de silicona para este cometido. Elementos estructurales 2 6 Los elementos estructurales del cable tienen como misión proporcionar el núcleo alrededor del cual se sustentan las fibras, ya sean trenzadas alrededor de él o dispersándose de forma paralela a él en ranuras practicadas sobre el elemento a tal efecto. Elementos de refuerzo Tienen por misión soportar la tracción a la que éste se ve sometido para que ninguna de sus fibras sufra una elongación superior a la permitida. También debe evitar posibles torsiones. Han de ser materiales flexibles y, ya que se emplearán kilómetros de ellos han de tener un coste asequible. Se suelen utilizar materiales como el acero, Kevlar y la fibra de vidrio. 2 7 Funda Por último, todo cable posee una funda, generalmente de plástico cuyo objetivo es proteger el núcleo que contiene el medio de transmisión frente a fenómenos externos a éste como son la temperatura, la humedad, el fuego, los golpes externos, etc. Dependiendo de para qué sea destinada la fibra, la composición de la funda variará. Por ejemplo, si va a ser instalada en canalizaciones de planta exterior, debido al peso y a la tracción bastará con un revestimiento de polietileno extruido. Si el cable va a ser aéreo, donde sólo importa la tracción en el momento de la instalación nos preocupará más que la funda ofrezca resistencia a las heladas y al viento. Si va a ser enterrado, querremos una funda que, aunque sea más pesada, soporte golpes y aplastamientos externos. En el caso de las fibras submarinas la funda será una compleja superposición de varias capas con diversas funciones aislantes. Pérdida en los cables de Fibra Óptica A la pérdida de potencia a través del medio se conoce como Atenuación, es expresada en decibelios, con un valor positivo en dB, es causada por distintos motivos, como la disminución en el ancho de banda del sistema, velocidad, eficiencia. La fibra de tipo multimodal, tiene mayor pérdida debido a que la onda luminosa se dispersa originada por las impurezas. Las principales causas de pérdida en el medio son: Pérdidas por absorción. Ocurre cuando las impurezas en la fibra absorben la luz, y esta se convierte en energía calorífica; las pérdidas normales van de 1 a 1000 dB/Km. Pérdida de Rayleigh. En el momento de la manufactura de la fibra, existe un momento donde no es líquida ni sólida y la tensión aplicada durante el enfriamiento puede provocar microscópicas irregularidades que se quedan permanentemente; cuando los rayos de luz pasan por la fibra, estos se difractan haciendo que la luz vaya en diferentes direcciones. Dispersión cromática. Esta dispersión sólo se observa en las fibras tipo unimodal, ocurre cuando los rayos de luz emitidos por la fuente y se propagan sobre el medio, no llegan al extremo opuesto en el mismo tiempo; esto se puede solucionar cambiando el emisor fuente. Pérdidas por radiación. Estas pérdidas se presentan cuando la fibra sufre de dobleces, esto puede ocurrir en la instalación y variación en la trayectoria, cuando se presenta discontinuidad en el medio. Dispersión modal. Es la diferencia en los tiempos de propagación de los rayos de luz. Pérdidas por acoplamiento. Las pérdidas por acoplamiento se dan cuando existen uniones de fibra, se deben a problemas de alineamiento. 2 8 2.2 No guiados: Radiofrecuencia, Microondas, Satélite e Infrarrojo. INFRARROJOS Mediante este tipo de transmisión, el propósito es el de dar al equipo la posibilidad de realizar una comunicación punto a punto utilizando un enlace óptico al aire libre como medio de transmisión, con una longitud determinada, estando ésta dentro del infrarrojo. El enlace óptico aquí tratado se fundamenta en una emisión de radiación infrarroja, vía aire, a diferencia del módulo anterior, en el cual la radiación luminosa emitida era conducida por el interior de la fibra. Esto comporta, naturalmente, una mayor atenuación y una menor directividad. Se trata de un sistema clásico utilizado en muchos mandos a distancia. El módulo puede dividirse en dos grandes bloques: el transmisor y el receptor. 2 9 El transmisor El transmisor consta de dos entradas con el propósito de dar al sistema la posibilidad de la transmisión tanto de señales analógicas (o digitales previamente moduladas con portadoras senoidales) como digitales. Está basado en dos elementos principales: un convertidor tensión-corriente, formado por un transistor, cuya misión será la de modular al LED emisor de infrarrojos TSUS5200 de tal forma que la potencia óptica radiada varíe del mismo modo que lo hace la señal de entrada; y el LED emisor. Según el tipo de señal a transmitir, cambia la forma en que se debe hacer trabajar al transistor. Así, para enviar señales analógicas, el transistor deberá trabajar en su región lineal. El receptor Diagrama de bloques. El circuito receptor utiliza un fotodiodo PIN como detector de luz. El motivo que llevó a la elección de este elemento, fue el de la frecuencia en las señales a transmitir por él. Un fototransistor, por ejemplo, nos darla una mayor corriente para una misma radiación de luz, sin embargo, sus tiempos de subida y bajada limitan su frecuencia de trabajo por debajo de los 100 KHz. Teniendo en cuenta que el sistema debe de poder transmitir señales moduladas de AM y FM con portadoras de frecuencia iguales e incluso superiores a la mencionada, el elemento detector de la radiación luminosa emitida por el transmisor debe de poder trabajar a estas frecuencias. La corriente que nos proporciona el fotodiodo es aplicada a un convertidor corriente-tensión de gran ganancia basado en un amplificador operacional. La tensión de salida varía linealmente con la energía luminosa recibida por el fotodiodo, condición indispensable para una buena reconstrucción de señales analógicas. La salida de este convertidor es convenientemente amplificada y llevada a la entrada de un conmutadormediante el cual se seleccionará el paso final al que se aplicará la misma. 3 0 En el caso de transmitir señales digitales (Pulsos), el paso final seleccionado será un comparador, el cual comparará la señal detectada con un nivel DC a fin de reconstruir el dato. Si la señal transmitida es analógica, el conmutador deberá posicionarse en AC y el último paso será un filtro pasa-bajo de tercer orden, estando su frecuencia de corte sobre los 300Hz, y un amplificador cuya ganancia está ajustada para que el nivel de salida del receptor sea aproximadamente el de la entrada al transmisor. RADIOFRECUENCIA Antenas Después de que un transmisor genere una señal de RF, debe haber algún método de radiar esta señal al espacio y debe haber también otro método para que un receptor intercepte o capte la señal. La antena cumple estos requerimientos. Una antena convierte las corrientes de alta frecuencias en ondas electromagnéticas para su transmisión y justamente hace lo contrario para la recepción. Las antenas transmisoras y receptoras tienen distintas funciones, pero se comportan exactamente igual. Es decir, su comportamiento es recíproco. Radio programación La energía radiada de una antena transmisora viaja en el espacio en muchas direcciones. Según la distancia a la antena aumenta, el campo de energía se expande y la intensidad de campo disminuye. Sin embargo, el camino o caminos mediante los cuales la señal alcanza la localización del receptor también afecta la intensidad de campo. Hay tres amplias clasificaciones de camino de la señal. Estas son: la onda de tierra, la onda de espacio, y la onda celeste. Nosotros describiremos únicamente las ondas de tierra que son las que vamos a utilizar en nuestro rango de frecuencias. Ondas de tierra La onda de tierra es una onda de radio que viaja a lo largo de la superficie de la tierra. En las bandas de baja frecuencia (LF) y frecuencia media (MF), este es el modo predominante de propagación. Estas longitudes de onda más largas tienden a seguir la curvatura de la tierra y realmente viajan más allá del horizonte. Sin embargo, según la frecuencia aumenta, la onda de tierra es más efectivamente absorbida por las irregularidades de la superficie terrestre. Esto es debido, a que según la frecuencia aumenta, las montañas, colinas, etc., se hacen significativas con relación a la longitud de onda transmitida. 3 1 Por ejemplo, a 30KHz la longitud de onda es de 10.000 metros. Incluso las montañas son relativamente insignificantes comparado con esta longitud de onda. Así, la onda de tierra, experimenta muy poca atenuación. Por otra parte, a 3MHz la longitud de onda es de 100 metros. Esto es suficientemente corto, como para que las colinas, árboles, y grandes edificios rompan y absorban la onda de tierra a causa de que son aproximadamente del mismo tamaño que la longitud de onda. 3 2 VENTAJAS E INCONVENIENTES DE LOS DIFERENTES SOPORTES 2.3 Métodos Para La Detección y Corrección de Errores: 33 DEFINICIONES: Enlace de Datos: Equipos terminales de d a t o s m á s l o s e l e m e n t o s d e l a r e d d e transmisión. Objetivo: Transmisión y recepción, de forma f iab le , d e b loqu e s d e in f o rma ció n (t ram as) entre equipos terminales. Control del Enlace : Procedimientos para el establecimiento, mantenimiento y desconexión d e c i r c u i t o s p a r a e l e n v í o d e i n f o r m a c i ó n , c o n t r o l d e l a c o r r e c t a t r a n s f e r e n c i a d e l o s datos y métodos necesarios para la detección y corrección de errores. TIPOS DE ENLACES: 34 35 Mensaje: Información que se quiere transmitir. Secuencia de caracteres o bits que Representan la información que se pretende enviar. Bloque: Secuencia de caracteres o bits que s e a g r u p a n p a r a s u t r a n s m i s i ó n d e b i d o a razones técnicas. T r a m a : S e c u e n c i a d e c a r a c t e r e s o b i t s (unidad de datos) que se transmiten al nivel de enlace. FUNCIONES DE LA CAPA DE ENLACE Iniciación: Envío de tramas de control entre las estaciones enlazadas para averiguar la disponibilidad para transmitir o recibir. I de n ti fi c a c i ón : P r o ce so s p a ra id e n t if ica r l a estación u origen de la información. Se usa en enlaces conmutados o punto a punto. Terminación: Comunicación de que todos los d a t o s se han r e c i b i d o c o r r e c t a m e n t e y desconexión para dejar libre los r e c u r s o s ocupados. 36 S i n cr o ni z a c i ó n d e Tr a m a : Dif e ren cia r la t ram a de l conjunto de información transmitida. Se consigue a ñ a d ie n d o a la t ra m a in f o rm a ció n d e co n t ro l qu e : Transparencia: Evitar la incorrecta interpretación de parte de los datos como elementos del protocolo. Recuperación de anomalías: Control de las situaciones imprevistas que se puedan producir en una transmisión. C o or di n a ci ó n de l a C om u n i ca c i ó n : P ro ce so s p a ra evitar conflictos en el establecimiento de los enlaces. Se utilizan dos métodos básicos: Centralizado: Una estación principal se encarga de gestionar el intercambio de información. 37 De contienda: Cualquier estación puede solicitar información en cualquier momento. Control de Errores: Detección y corrección mediante alguna de las técnicas siguientes: Control directo de errores. Petición automática de retransmisión. C o n t r o l d e E c o , u t i l i z a d o p a r a t r a n s m i s i o n e s asíncronas. Control de Flujo : Regulación del ritmo de en vío d e t ra ma s d e l t ra n sm iso r a l re cep t o r mediante alguna de las técnicas siguientes: Parada y Espera. Parada y arranque. Ventana Deslizante. 38 DETECCIÓN Y CORECCIÓN DE ERRORES Todo canal de transmisión de datos introduce errores en la información transmitida. 1. Tasa de errores (BER): Relación entre el número d e b i t s e r r ó n e o s r e c i b i d o s y e l n ú m e r o d e b i t s transmitidos. 2. R e d u n d a n c i a : I n f o r m a c i ó n q u e s e a ñ a d e a l mensaje transmitido para permitir la detección y corrección de errores. Tipos de Errores Error de Bit. E r r o r d e R á f a g a : U n a c a d e n a d e b i t s contiguos erróneos. A u n a m a y o r v e l o c i d a d d e t r a n s m i s i ó n , u n mismo error afecta a más bits. Un ruido de 1/100 segundos puede afectar: Si se transmite a 1 Kbps, a 10 bits. Si se transmite a 1 Mbps, a 10.000 bits. 39 Detección de Errores: Uso de la redundancia Si se retransmite dos veces el mismo mensaje es muy improbable que los mismos bits fallen en las mismas posiciones. Se intenta repetir la mínima información posible. Métodos de Detección: VRC y LRC CRC Suma de Comprobación Verificación de Redundancia Vertical (VRC), Verificación de Redundancia Longitudinal (LRC) y Verificación de Redundancia Cíclica (CRC). Se conocen el tipo de errores que pueden existir, el problema es ser capaz de reconocerlos, dado que no se puede comparar el dato recibido con el original, sólo se podría saber que ha habido un error cuando se descodifique todo el mensaje y se vea que no tiene sentido. Sin embargo existen determinadas técnicas sencillas y objetivas para detectar los errores producidos en la transmisión: Redundancia. En las comunicaciones de datos se usan cuatro tipos de comprobación de redundancia: verificación de redundancia vertical (VRC, Vertical RedundancyCheck) conocida como verificación de paridad, verificación de redundancia longitudinal (LRC longitudinal RedundancyCheck), verificación de redundancia cíclica (CRC CyclicRedundandyCheck) y suma de comprobación (Checksum). Las tres primeras se implementan habitualmente en el nivel físico para que pueda usarlo en nivel de enlace de datos, mientras que la suma de comprobación se usa en los niveles más altos. VERIFICACIÓN DE REDUNDANCIA VERTICAL (VRC) 40 Es el mecanismo más frecuente y barato, la VRC se denomina a menudo verificación de paridad, y se basa en añadir un bit de redundancia, denominado bit de paridad, al final de cada unidad de datos, de forma que el número total de unos en la unidad (incluyendo el bit de paridad) sea par, o impar en el caso de la verificación de paridad impar. S e u t i l i z a u n b i t d e p a r i d a d p o r c a d a unidad de datos. Prestaciones: Detecta todos los errores de bit. Detecta errores de ráfaga siempre y cuando e l n ú m e r o t o t a l d e b i t s c a m b i a d o s s e a impar. Utiliza un solo bit redundante por unidad de datos. VERIFICACIÓN DE REDUNDANCIA LONGITUDINAL (LRC) En esta técnica, los bloques de bits se organizan en forma de tabla (filas y columnas), a continuación se calcula un bit de paridad para cada columna y se crea una nueva fila de bits, que serán los bits de paridad de todo el bloque, a continuación se añaden los bits de paridad al dato y se envían al receptor. o Los bloques a transmitir se organizan en forma de tabla. o Se añade un bit de paridad por cada columna. o Utiliza un solo bit redundante por unidad de datos. Prestaciones: ráfaga. 41 de n bits. una unidad de datos y dos bits de otra unidad de datos que están en la misma posición. Verificación de redundancia cíclica CRC A diferencia de las técnicas VRC y LRC, que se basan en la suma (para calcular la paridad), la técnica CRC se basa en la división binaria. En esta técnica, se añaden bits redundantes en la unidad de datos de forma que los todo el conjunto sea divisible exactamente por un número binario determinado, en el destino los datos recibidos son divididos por ese mismo número, si en ese caso no hay resto de la operación, el dato es aceptado, si apareciera un resto de la división, el dato se entendería que se ha corrompido y se rechazará. Corrección de errores El concepto de la corrección de errores se puede comprender con el caso más sencillo: el error de un único bit. Un error de un bit supone que un bit ha cambiado de un 0 a un 1 o de un 1 a un 0, para corregir el error, el receptor sólo tiene que invertir el valor del bit alterado, sin embargo, para hacer eso, el receptor debe saber en qué bit está el error, por lo que el secreto de la corrección de errores es localizar el bit o bits inválidos. La cuestión es el uso de los bits de redundancia para la corrección. Código Hamming Se pueden utilizar los bits de redundancia para corregir errores, pero ¿cómo se manipulan esos bits para descubrir en qué posición se ha producido el error? R. W. Hamming desarrolló una técnica que proporciona una solución práctica. El código Hamming se puede aplicar a unidades de datos de cualquier longitud y usa la relación de bits de datos y de redundancia. En el código cada bit r es el bit de VRC (redundancia vertical) para una combinación de bits de datos. Por ejemplo, un dato de 7 bits necesita 4 bits de redundancia, los colocaremos en las posiciones 1, 2, 4 y 8. Corrección de errores de ráfaga. 42 Se puede diseñar un código Hamming para corregir errores de ráfaga de una cierta longitud, sin embargo el número de bits de redundancia necesarios es muy elevado, porque los errores pueden ser de tantos bits pero pueden estar en cualquiera de los bits de la cadena transmitida. 43 2.4 Control de Flujo CONTROL DE FLUJO El problema a resolver con el control de flujo de datos o de congestión es que una entidad emisora no sobrecargue a otra receptora de datos. Esto puede suceder cuando la memoria reservada (buffer) en la recepción se desborda. El control de flujo no contempla en principio la existencia de errores de transmisión, sin embargo a menudo se integra con del control de errores que se verá más adelante. Existen dos formas diferentes de hacer el control del flujo: control hardware y control software. ASENTAMIENTO Un primer protocolo capaz de controlar la congestión muy simple es el conocido como de parada y espera o en términos más formales se conoce como Asentamiento. Únicamente para evitar desbordar al receptor, el emisor enviaría una trama y esperaría un acuse de recibo antes de enviar la siguiente. Este procedimiento resulta adecuado cuando hay que enviar pocas tramas de gran tamaño. Sin embargo, la información suele transmitirse en forma de tramas cortas debido a la posibilidad de errores, la capacidad de buffer limitada y la necesidad en algunos casos de compartir el medio. La eficiencia de este sistema sería la proporción entre el tiempo empleado en transmitir información útil (Trama) y el tiempo total del proceso (Total). El primero sería igual al tamaño de la trama partido por la velocidad de transmisión del emisor. VENTANAS DESLIZANTES Un mecanismo más sofisticado y muy empleado es el de la ventana deslizante. La ventana determina cuantos mensajes pueden estar pendientes de confirmación y su tamaño se ajusta a la capacidad del buffer del receptor para almacenar tramas. El tamaño máximo de la ventana está además limitado por el tamaño del número de secuencia que se utiliza para numerar las tramas. Si las tramas se numeran con tres bits (en modulo 8, del 0 al 7), se podrán enviar hasta siete tramas sin esperar acuse de recibo y sin que el protocolo falle (tamaño de ventana = 2k-1). Si el número de secuencia es de 7 bits (modulo 128, del 0 al 127) se podrán enviar hasta 127 tramas si es que el buffer del receptor tiene capacidad para ellas. Normalmente, si el tamaño no es prefijado por el protocolo, en el establecimiento del enlace el emisor y receptor negociarán el tamaño de la ventana atendiendo a las características del elemento que ofrece menos prestaciones. 44 CONTROL POR HARDWARE Consiste en utilizar líneas dispuestas para ese fin como las que tiene la conexión RS-232-C. Este método de control del flujo de transmisión utiliza líneas del puerto serie para parar o reanudar el flujo de datos y por tanto el cable de comunicaciones, además de las tres líneas fundamentales de la conexión serie: emisión, recepción y masa, ha de llevar algún hilo más para transmitir las señales de control. En el caso más sencillo de que la comunicación sea en un solo sentido, por ejemplo con una impresora, bastaría con la utilización de una línea más. Esta línea la gobernaría la impresora y su misión sería la de un semáforo. Por ejemplo, utilizando los niveles eléctricos reales que usa la norma serie RS-232C, si esta línea está a una tensión positiva de 15 V. (0 lógico) indicaría que la impresora está en condiciones de recibir datos, y si por el contrario está a -15 V. (1 lógico) indicaría que no se le deben enviar más datos por el momento. Si la comunicación es en ambos sentidos, entonces necesitaríamos al menos dos líneas de control, una que actuaría de semáforo en un sentido y la otra en el otro. Las líneas se han de elegir que vayan de una salida a una entrada, para que la lectura sea válida y además se debe tratar de utilizar las que la norma RS-232-C recomienda para este fin. CONTROL POR SOFTWARE La otra forma de control del flujo consiste en enviar a través de la línea de comunicación caracteres de control o información en las tramas que indican al otro dispositivo el estado del receptor. La utilización de un control software de la transmisión permite una mayor versatilidad del protocolo de comunicaciones y por otra parte se tiene mayor independencia del medio físico utilizado. Así por ejemplo, con un protocolo exclusivamente hardware sería bastante difícil hacer una comunicación vía telefónica, ya que las señales auxiliares de control se tendrían que emular de alguna manera. Las formas más sencillas de control de flujo por software son el empleo de un protocolo como el XON/XOFF que se verá más adelante o como la espera de confirmación antes del envío mediante un ACK o similar como se indicaba en el ejemplo del protocolo de parada y espera. BIBLIOGRAFÍA 45 EFECTOS DE ONDA ESTACIONARIA: Puente de Tacoma http://www.youtube.com/watch?v=jzczJXSxnw&feature=fvwrel http://es.wikipedia.org/wiki/Mediodetransmisi%C3%B3n http://es.wikipedia.org/wiki/Fibra %C3%B3ptica http://es.wikipedia.org/wiki/Fibra %C3%B3ptica 46