• Aprenderly
  • Explore
    • Ciencia
    • Ciencias sociales
    • Historia
    • Ingeniería
    • Matemáticas
    • Negocio
    • Numeración de las artes

    Top subcategories

    • Advanced Math
    • Estadísticas y Probabilidades
    • Geometría
    • Trigonometry
    • Álgebra
    • other →

    Top subcategories

    • Astronomía
    • Biología
    • Ciencias ambientales
    • Ciencias de la Tierra
    • Física
    • Medicina
    • Química
    • other →

    Top subcategories

    • Antropología
    • Psicología
    • Sociología
    • other →

    Top subcategories

    • Economía
    • other →

    Top subcategories

    • Ciencias de la computación
    • Diseño web
    • Ingeniería eléctrica
    • other →

    Top subcategories

    • Arquitectura
    • Artes escénicas
    • Ciencias de la religión
    • Comunicación
    • Escritura
    • Filosofía
    • Música
    • other →

    Top subcategories

    • Edad Antigua
    • Historia de Europa
    • Historia de los Estados Unidos de América
    • Historia universal
    • other →
 
Sign in Sign up
Upload
Medidas de dispersión o de variabilidad -Rango
Medidas de dispersión o de variabilidad -Rango

Análisis Estadístico 2016
Análisis Estadístico 2016

Cronograma Estadística MT 311
Cronograma Estadística MT 311

variable probabilidad -identificar -"caso de"
variable probabilidad -identificar -"caso de"

Estadística I
Estadística I

Contenidos Matemáticas aplicadas a las Ciencias Sociales I
Contenidos Matemáticas aplicadas a las Ciencias Sociales I

Distribución normal
Distribución normal

3 C Programa MATEMATICA
3 C Programa MATEMATICA

1

Función probit



En probabilidad y estadística se llama función probit a la inversa de la función de distribución o función cuantil asociada con la distribución normal estándar. La función tiene aplicaciones en gráficos estadísticos exploratorios y modelos probit. Para la distribución normal estándar (a menudo denotada por N(0,1)) la función de distribución se denota comúnmente por Φ. Φ es una función sigmoide continua y creciente, cuyos dominio y recorrido son el intervalo (0, 1) y la recta real, respectivamente. Por ejemplo, considérese el hecho de que la distribución N(0, 1) tiene un 95% de probabilidad entre -1,96 y 1,96 y es simétrica en un entorno de cero. De ahí se deduce que Φ(-1,96) = 0,025 = 1 - Φ(1,96).La función probit proporciona el cálculo inverso, generando un valor de una variable aleatoria N(0, 1) asociado a una probabilidad acumulada bajo su curva. Formalmente, la función probit es la inversa de Φ(z), denotada Φ-1(p).Siguiendo con el ejemplo, probit(0,025) = -1,96 = -probit(0,975).En general, Φ(probit(p)) = p y probit(Φ(z)) = zLa idea de probit fue publicada en 1934 por Chester Ittner Bliss (1899-1979) en un artículo de Science sobre cómo tratar datos tales como el porcentaje de plaga eliminada por un pesticida. Bliss propuso transformar el porcentaje eliminado en una ""unidad de probabilidad"" (o ""probit"") que estaría linealmente relacionada con la definición moderna (él la definió arbitrariamente como igual a 0 para 0,0001 y 10 para 0,9999). Incluyó una tabla para ayudar a otros investigadores a convertir sus porcentajes eliminados a su probit, con la cual podrían dibujar el logaritmo de la dosis y así, se esperaba, obtener una línea más o menos recta. El llamado modelo probit es todavía importante en toxicología, así como en otros campos. La aproximación se justifica, en particular, si la variación de respuesta puede racionalizarse como una distribución lognormal de tolerancias entre los sujetos del test, donde la tolerancia de un sujeto particular es justo la dosis suficiente para la respuesta de interés.El método introducido por Bliss fue transcrito en un importante texto de aplicaciones toxicológicas de D. J. Finney. Las tablas de valores de Finney pueden derivarse de probits, tal como se definen aquí, añadiendo una cantidad de 5. Esta diferencia es resumida por Collett (p. 55): ""La definición original de un probit [añadiendo 5] pretendía en principio evitar el trabajo con probits negativos; [...] Esta definición se usa todavía en algunos cuartos , pero en la mayoría de paquetes de software estadístico en los cuales se refiere como análisis probit, los probits se definen sin la suma de 5"". Debería observarse que la metodología probit, incluyendo la optimización numérica para ajustarse a las funciones probit, fue introducida antes de la popularización de la computación electrónica. Cuando se usan tablas, es conveniente tener probits uniformemente positivos. Las áreas comunes de aplicación no requieren probits positivos.
El centro de tesis, documentos, publicaciones y recursos educativos más amplio de la Red.
  • aprenderly.com © 2025
  • GDPR
  • Privacy
  • Terms
  • Report