• Aprenderly
  • Explore
    • Ciencia
    • Ciencias sociales
    • Historia
    • Ingeniería
    • Matemáticas
    • Negocio
    • Numeración de las artes

    Top subcategories

    • Advanced Math
    • Estadísticas y Probabilidades
    • Geometría
    • Trigonometry
    • Álgebra
    • other →

    Top subcategories

    • Astronomía
    • Biología
    • Ciencias ambientales
    • Ciencias de la Tierra
    • Física
    • Medicina
    • Química
    • other →

    Top subcategories

    • Antropología
    • Psicología
    • Sociología
    • other →

    Top subcategories

    • Economía
    • other →

    Top subcategories

    • Ciencias de la computación
    • Diseño web
    • Ingeniería eléctrica
    • other →

    Top subcategories

    • Arquitectura
    • Artes escénicas
    • Ciencias de la religión
    • Comunicación
    • Escritura
    • Filosofía
    • Música
    • other →

    Top subcategories

    • Edad Antigua
    • Historia de Europa
    • Historia de los Estados Unidos de América
    • Historia universal
    • other →
 
Sign in Sign up
Upload
ejercicios matemáticas b – 4º eso tema: geometría analítica
ejercicios matemáticas b – 4º eso tema: geometría analítica

REPASO VECTORES 1. Hallar el simétrico del punto A(4,
REPASO VECTORES 1. Hallar el simétrico del punto A(4,

CPI-14 Ej GA Algebra Vectorial Practica
CPI-14 Ej GA Algebra Vectorial Practica

CPI-14 Ej GA Algebra Vectorial Teoria
CPI-14 Ej GA Algebra Vectorial Teoria

π π π
π π π

1

Coplanaridad

En geometría, un conjunto de puntos en el espacio es coplanario (el anglicismo coplanar es incorrecto) si todos los puntos se encuentran en el mismo plano. Tres puntos distintos siempre son coplanarios, pero un cuarto punto añadido en el espacio puede no pertenecer al mismo plano, siendo entonces no coplanario respecto de los anteriores.Se puede demostrar si varios puntos son coplanarios determinando que el producto escalar de un vector normal al plano y otro vector desde cualquier punto en el plano hasta el punto que se está probando es 0. Es decir, si se desea determinar si un conjunto de puntos son coplanarios, primero hay construir un vector para cada punto dirigido a uno de los otros puntos (mediante la fórmula de distancia, por ejemplo). En segundo lugar, construir un vector que sea perpendicular (normal) al plano de prueba (por ejemplo, calculando el producto cruzado de dos de los vectores del primer paso). Por último, calcular el producto escalar de este vector con cada uno de los vectores que creó en el primer paso. Si el resultado de cada producto escalar es 0, entonces todos los puntos son coplanarios.Los determinantes de Cayley-Menger proporcionan una solución para el problema de determinar si un conjunto de puntos es coplanario, conociendo sólo las distancias entre ellos.
El centro de tesis, documentos, publicaciones y recursos educativos más amplio de la Red.
  • aprenderly.com © 2025
  • GDPR
  • Privacy
  • Terms
  • Report