• Aprenderly
  • Explore
    • Ciencia
    • Ciencias sociales
    • Historia
    • Ingeniería
    • Matemáticas
    • Negocio
    • Numeración de las artes

    Top subcategories

    • Advanced Math
    • Estadísticas y Probabilidades
    • Geometría
    • Trigonometry
    • Álgebra
    • other →

    Top subcategories

    • Astronomía
    • Biología
    • Ciencias ambientales
    • Ciencias de la Tierra
    • Física
    • Medicina
    • Química
    • other →

    Top subcategories

    • Antropología
    • Psicología
    • Sociología
    • other →

    Top subcategories

    • Economía
    • other →

    Top subcategories

    • Ciencias de la computación
    • Diseño web
    • Ingeniería eléctrica
    • other →

    Top subcategories

    • Arquitectura
    • Artes escénicas
    • Ciencias de la religión
    • Comunicación
    • Escritura
    • Filosofía
    • Música
    • other →

    Top subcategories

    • Edad Antigua
    • Historia de Europa
    • Historia de los Estados Unidos de América
    • Historia universal
    • other →
 
Sign in Sign up
Upload
DIFICULTADES DE LOS ESTUDIANTES EN LA CONSTRUCCIÓN
DIFICULTADES DE LOS ESTUDIANTES EN LA CONSTRUCCIÓN

Imre Lakatos
Imre Lakatos

Ell@s tienen la palabra
Ell@s tienen la palabra

PREGUNTAS CLAVE FILOSOFÍA
PREGUNTAS CLAVE FILOSOFÍA

este enlace
este enlace

1

Pruebas y Refutaciones

Pruebas y Refutaciones es un libro escrito por Imre Lakatos — filósofo de las matemáticas y de la ciencia — exponiendo su visión del desarrollo y progreso del conocimiento matemático. El libro está escrito como una serie de diálogos socráticos en los cuales participa un profesor y un grupo de estudiantes (quienes llevan el nombre de las letras del alfabeto griego) que debaten sobre la demostración de la Característica de Euler; tal como es definida para un poliedro. Un punto central del libro es que las definiciones no están talladas en mármol, sino que, a menudo, tienen que ser corregidas a la luz de conocimientos adquiridos posteriormente, en particular, demostraciones falladas. Esto le da a las matemáticas un estilo más bien experimental. Al final de la introducción, Lakatos explica que su propósito es desafiar el formalismo en matemáticas, y para mostrar que las “matemáticas informales” crecen por una lógica de ""pruebas y refutaciones"". En las palabras de Lakatos: las matemáticas «no se desarrollan mediante un monótono aumento del número de teoremas indubitablemente establecidos, sino mediante la incesante mejora de las conjeturas, gracias a la especulación y a la crítica, siguiendo la lógica de pruebas y refutaciones».Muchas ideas lógicas importantes se explican en el libro. Por ejemplo, se discute la diferencia entre un contraejemplo a un Lema (un llamado contraejemplo local) y un contraejemplo a la conjetura específica bajo ataque (un contraejemplo global, en este caso ""a la característica de Euler"") Lakatos aboga por un estilo diferente de libro de texto, un estilo que utilice la heurística. A los críticos que dicen que sería demasiado largo, él responde: ""La respuesta a este argumento es pedestre: Veamos” El libro incluye dos apéndices. En la primera, Lakatos da ejemplos del proceso heurístico en el descubrimiento matemático. En el segundo, contrasta los enfoques deductivistas y heurísticos y proporciona un análisis heurístico de algunos conceptos generado por ""prueba"", tales como el de convergencia uniforme, la función de variación acotada (o limitada), y la definición de Medida exterior de un conjunto medible.El libro ha sido traducido a más de 15 idiomas, incluido el chino, el coreano y el serbocroata, y entró en su segunda edición en chino en 2007.Aunque el libro está escrito como una narrativa, en realidad desarrolla un verdadero método de investigación, el de ""pruebas y refutaciones"".
El centro de tesis, documentos, publicaciones y recursos educativos más amplio de la Red.
  • aprenderly.com © 2025
  • GDPR
  • Privacy
  • Terms
  • Report