• Aprenderly
  • Explore
    • Ciencia
    • Ciencias sociales
    • Historia
    • Ingeniería
    • Matemáticas
    • Negocio
    • Numeración de las artes

    Top subcategories

    • Advanced Math
    • Estadísticas y Probabilidades
    • Geometría
    • Trigonometry
    • Álgebra
    • other →

    Top subcategories

    • Astronomía
    • Biología
    • Ciencias ambientales
    • Ciencias de la Tierra
    • Física
    • Medicina
    • Química
    • other →

    Top subcategories

    • Antropología
    • Psicología
    • Sociología
    • other →

    Top subcategories

    • Economía
    • other →

    Top subcategories

    • Ciencias de la computación
    • Diseño web
    • Ingeniería eléctrica
    • other →

    Top subcategories

    • Arquitectura
    • Artes escénicas
    • Ciencias de la religión
    • Comunicación
    • Escritura
    • Filosofía
    • Música
    • other →

    Top subcategories

    • Edad Antigua
    • Historia de Europa
    • Historia de los Estados Unidos de América
    • Historia universal
    • other →
 
Sign in Sign up
Upload
(A) = (X — A) - Universidad de Sonora
(A) = (X — A) - Universidad de Sonora

Introducción a espacios cubrientes, fibraciones y - FCFM-BUAP
Introducción a espacios cubrientes, fibraciones y - FCFM-BUAP

Espacios de funciones y espacios de adjunción.
Espacios de funciones y espacios de adjunción.

Continuos Localmente Conexos - FCFM-BUAP
Continuos Localmente Conexos - FCFM-BUAP

ab - Universidad de Oriente
ab - Universidad de Oriente

Particiones de la unidad, una aplicación a variedades.
Particiones de la unidad, una aplicación a variedades.

Categorías de Conexión
Categorías de Conexión

Topología del plano complejo
Topología del plano complejo

Topologia - WordPress.com
Topologia - WordPress.com

Capítulo 1 Aplicaciones Cubrientes
Capítulo 1 Aplicaciones Cubrientes

1

Funciones abiertas y cerradas

En topología, una función abierta es una función entre dos espacios topológicos cuando la imagen de un conjunto abierto es un conjunto abierto. Es decir, una función f: X → Y es abierta si para cualquier conjunto abierto U en X, la imagen f(U) es abierta en Y. Asimismo, una función cerrada cumple que la imagen de un conjunto cerrado es un conjunto cerrado.Obsérvese que ni las funciones abiertas ni las cerradas requieren ser continuas. Aunque sus definiciones parecen naturales, las funciones abiertas y cerradas son mucho menos importantes que las funciones continuas. Una función f: X → Y es continua si la preimagen de cualquier conjunto abierto de Y es abierto en X, es decir: si la pre imagen de cada conjunto cerrado de Y es cerrado en X. Deberá cumplir que es biunívoca, continua y cerrada.Reciben esta denominación las formas que se muestran continuidad de contornos en su perímetro
El centro de tesis, documentos, publicaciones y recursos educativos más amplio de la Red.
  • aprenderly.com © 2025
  • GDPR
  • Privacy
  • Terms
  • Report