Download Modelo exponencial - Campus Virtual ORT
Document related concepts
Transcript
Modelo exponencial 1) Si tomamos un papel y lo plegamos una vez, luego dos veces, tres, y así sucesivamente, responder: a) ¿En cuántas partes quedará dividido el papel si se lo plegó 4 veces? ¿Y si lo plegamos 11 veces? b) ¿Cuántas veces hay que doblar el papel para que quede dividido en 32768 partes? 2) El crecimiento de un cultivo de bacterias es tal que a cada hora se duplica el número de las mismas. En estas condiciones si había 1000 bacterias al iniciar el experimento, el número habrá aumentado a 2000 al cabo de una hora, 4000 al cabo de dos horas y así sucesivamente. a) Completar la siguiente tabla, donde t representa el tiempo en hs, y f(t) la cantidad de bacterias en el tiempo t. t 0 1 2 3 4 f(t) b) Escribir la fórmula de la función que representa la cantidad de bacterias en función del tiempo de cultivo. c) ¿Cuántas bacterias habrá al cabo de 6 hs? ¿Y después de 10 hs? d) ¿En qué momento habrá una cantidad de 4096000 bacterias? 3) Se invierten $1000 durante 8 años a un interés del 9% anual. Calcular el monto que se puede retirar al finalizar los 8 años. 4) Una población de 4 millones de habitantes crece a una tasa de 3% anual. Estimar el tamaño de la población al cabo de 5 años. Rta: 4,63 millones 5) Clara está estudiando el crecimiento de una población de insectos. Durante la primera semana hay 500 insectos, la segunda semana hay 1500 y las semanas siguientes se sigue triplicando la población. ¿Cuántos insectos habrá la quinta semana? Escribir la función que permite calcular la cantidad de insectos en función de las semanas transcurridas. 6) Un capital de $ 7000, colocado a un interés del 2% anual, se convirtió al cabo de unos años en $ 8201,61. ¿Cuántos años transcurrieron? Rta. Casi ocho años. 7) Se deposita un capital de $ 25.000 en un banco que ofrece una tasa mensual de 0,5 % de interés compuesto. a) La expresión (fórmula) que relaciona el capital acumulado con respecto al tiempo (en meses) es..................................... b) ¿Qué capital se acumuló en el año? c) Para llegar a acumular $ 26.278.50, el dinero debería permanecer depositado ¿cuántos meses? 8) Se deposita cierta cantidad de dinero en un banco que ofrece el 6,7 % trimestral, después de 1 año de depositado el dinero se tienen $ 1.555.40 de capital acumulado (monto). a) ¿Cuál es el capital inicial depositado? b) ¿Cuál es la expresión que permite determinar el monto ( en $) en función del tiempo (en meses)?. c) ¿Cuál será el monto 3 meses después? d) ¿A partir de cuánto tiempo el monto será mayor que $5.000? 9) Una población de aves, cuenta inicialmente con 50 individuos y se triplica cada 2 años. 1. ¿Cuál es la fórmula de la función que representa el crecimiento de la población de aves? 2. ¿Cuántas aves hay después de 4 años? 3. ¿Después de cuanto tiempo la población de aves será de 1000 individuos? 10) Se sabe que una población de bacterias se duplica cada tres horas, si inicialmente hay 100 bacterias, responder: a) ¿Cuál es el tamaño de la población al cabo de 15 hs? b) ¿Cuál es el tamaño de la población al cabo de t hs?