Download Transcripción

Document related concepts

Vector de clonación wikipedia , lookup

ADN ligasa wikipedia , lookup

Transcriptasa inversa wikipedia , lookup

Genética molecular wikipedia , lookup

Historia de la biología del ARN wikipedia , lookup

Transcript
La Molécula de la Vida
Ascaris megalocephala 2
Cebolla 16
Drosophila 8 cromosomas
Hombre 46
Perro 78
Los Acidos Nucleícos
ADN, ARN, ATP, NAD, FAD
1) Una base nitrogenada (purina o pirimidina)
2) Un azúcar (pentosa)
3) Una molécula de ácido fosfórico
Purinas:
Pirimidinas:
Estructura del ADN
NH
terminal 5'
N
HO
2
N
N
Adenina
A
N
O
NH
N
O
O
P
2
O
N
O
Citosina
C
O
HO
O
N
NH
O
O
P
N
O
NH
N
2
Guanina
G
O
HO
O
CH
3
NH
O
O
P
N
O
O
Timina
T
O
HO
OH
terminal 3'
Estructura del ADN
Watson y Crick 1953
LA INFORMACION NECESARIA PARA GENERAR LAS PROTEINAS INCUYENDO
LAS ENZIMAS SON CODIFICADAS POR GENES.
Expresión genética
promotor
Secuencia
de unión al
ribosoma
Gene estructural
(secuencia codificante)
codón de
inicio
codón de
paro
ADN
P
RBS
Transcripción
ARN
RBS
Traducción
Proteína
terminador
Preservación y transmisión de la información
genética
•
•
•
•
•
•
•
GEN: Segmento de ADN que contienen la
información necesaria para formar una proteína.
Replicación. Copia del ADN para formar moléculas hijas idénticas.
EXPRESION
Transcripción. Proceso mediante el cual, el mensaje genético del ADN es transcrito
en forma de ARN mensajero. (ARN polimerasa, ARNm). Señal: promotor
Traducción. Proceso por el cual el mensaje genético es descifrado en los ribosomas,
donde el RNA se utiliza como matriz dirigiendo la secuencia aminoácida específica
para la síntesis proteica (ARNm, ARNt, ribosoma) Señal: RBS.
Modificación post-traduccional
Eliminación de exones (eucariotes)
La replicación es realizada por enzimas
Replicación del ADN
Fenómeno mediante el cual
el ADN se duplica usándose
a si mismo como templado.
Replicación del ADN
Dogma Central
Transcripción
•Synthesis of RNA from a DNA Template.
•Requires DNA-dependent RNA polymerase plus the four nucleotides (ATP, GTP. CTP and
UTP).
•Synthesis begins at a the initiation site on DNA.
•The template strand is read 3' to 5' and the mRNA is synthesized 5' to 3‘.
Transcripción
Transcripción
Código Genético
Nirenberg and Khorana,
Premio Nobel in Fisiologia 1968
Traducción
Tecnología del ADN recombinante
(Ingeniería genética)

Los genes se pueden:





Aislar y amplificar (obtener múltiples copias)
Secuenciar
Expresar con intensidad
Desactivar
Detectar con sensibilidad y especificidad
Herramientas
 Enzimas de restricción (endonucleasas)
Enzimas de modificación
Ligasa
ADN polimerasa
Nucleasas
kinasa, transferasa,etc,etc,etc.
Vectores (plásmidos, fagos, cósmidos, etc)
AISLAMIENTO DE UN GEN
Kary Mullis in Scientific American:
"Beginning with a single molecule of the genetic material
DNA, the PCR can generate 100 billion similar molecules
in an afternoon. The reaction is easy to execute. It requires
no more than a test tube, a few simple reagents and a
source of heat. The DNA sample that one wishes to copy
can be pure, or it can be a minute part of an extremely
complex mixture of biological materials. The DNA may
come from a hospital tissue specimen, from a single
human hair, from a drop of dried blood at the scene of a
crime, from the tissues of a mummified brain or from a
40,000-year-old wooly mammoth frozen in a glacier."
http://nobelprize.org/chemistry/educational/pcr/
Reacción en Cadena de la Polimerasa
“PCR”
Taq DNA polimerasa
1993 Premio Nobel en Quimica a Kary Mullis
Enzimas de Restricción
Enzimas de Restricción
BfuI
BciVI
GTATCC(N)6/5^
ER1501/2
BglI
BglI
GCCNNNN^NGGC
ER0071/2
BglII
BglII
A^GATCT
ER0081/2
Bme1390I ScrFI
CC^NGG
ER1421/2
BoxI
PshAI
GACNN^NNGTC
ER1431/2
BpiI
BbvII
GAAGAC(N)2/6^
ER1011/2
BplI
BplI
^8/13(N)GAG(N)5CTC(N)13/8^
ER1311/2
Bpu10I
Bpu10I
CCTNAGC-5/-2^
ER1181/2
Enzimas de Restricción
Fermentas
Specificity
Prototype
Enzyme
5'=>3'
new
new
Catalog #
Bpu1102I
EspI
GC^TNAGC
ER0091/2
AarI
AarI
CACCTGC(N)4/8^
ER1581/2
BseDI
SecI
C^CNNGG
ER1081
AasI
DrdI
GACNNNN^NNGTC
ER1721/2
BseGI
FokI (GGATG(N)9/13^) GGATG(N)2/0^
ER0871/2
AatII
AatII
GACGT^C
ER0991/2
BseJI
BsaBI
GATNN^NNATC
ER1711
BsiYI
CCNNNNN^NNGG
ER1201/2
Acc65I
KpnI (GGTAC^C)
G^GTACC
ER0901/2
BseLI
AdeI
DraIII
CACNNN^GTG
ER1231/2
BseMI
BsrDI
GCAATG(N)2/0^
ER1261/2
AlfI
AlfI
^(10/12)GCA(N)6TGC(12/10)^
ER1801
BseMII
BseMII
CTCAG(N)10/8^
ER1401/2
BsrI
ACTGG(N)1/-1^
ER0881/2
AloI
AloI
^7/12-13(N)GAAC(N)6TCC(N)12-13/7^ ER1491/2
BseNI
AluI
AluI
AG^CT
ER0011/2
BseSI
BseSI
GKGCM^C
ER1441/2
Alw21I
HgiAI
GWGCW^C
ER0021/2
BseXI
BbvI
GCAGC(N)8/12^
ER1451/2
FnuDII
CG^CG
ER0921/2
Alw26I
BsmAI
GTCTC(N)1/5^
ER0031/2
Bsh1236I
Alw44I
ApaLI
G^TGCAC
ER0041/2
Bsh1285I
McrI
CGRY^CG
ER0891
ApaI
ApaI
GGGCC^C
ER1411/2
BshNI
HgiCI
G^GYRCC
ER1001/2
BamHI
BamHI
G^GATCC
ER0051/2/3
BshTI
AgeI
A^CCGGT
ER1461/2
BauI
BsiI
CACGAG(-5/-1)^
ER1841
Bsp68I
NruI
TCG^CGA
ER0111/2
AsuII
TT^CGAA
ER0121
BclI
BclI
T^GATCA
ER0721/2
Bsp119I
BcnI
CauII
CC^SGG
ER0061/2
Bsp120I
ApaI (GGGCC^C)
G^GGCCC
ER0131/2/3
BcuI
SpeI
A^CTAGT
ER1251/2
Bsp143I
MboI
^GATC
ER0781/2
HaeII
RGCGC^Y
ER0791/2
BfiI
BfiI
ACTGGG(N)5/4^
ER1591/2
Bsp143II
BfmI
SfeI
C^TRYAG
ER1161/2
Bsp1407I
Bsp1407I
T^GTACA
ER0931/2
BfuI
BciVI
GTATCC(N)6/5^
ER1501/2
BspLI
NlaIV
GGN^NCC
ER1151/2
BinI
GGATC(N)4/5^
ER1321/2
BglI
BglI
GCCNNNN^NGGC
ER0071/2
BspPI
BglII
BglII
A^GATCT
ER0081/2
BspTI
AflII
C^TTAAG
ER0831/2
Bme1390I ScrFI
CC^NGG
ER1421/2
Bst1107I
SnaI
GTA^TAC
ER0701/2
BoxI
PshAI
GACNN^NNGTC
ER1431/2
BstXI
BstXI
CCANNNNN^NTGG
ER1021/2
BpiI
BbvII
GAAGAC(N)2/6^
ER1011/2
Bsu15I
ClaI
AT^CGAT
ER0141/2
BsuRI
HaeIII
GG^CC
ER0151/2/3
BveI
BspMI
ACCTGC(N)4/8^
ER1741
BplI
BplI
^8/13(N)GAG(N)5CTC(N)13/8^
Bpu10I
Bpu10I
CCTNAGC-5/-2^
ER1311/2
ER1181/2new
Bpu1102I
EspI
GC^TNAGC
ER0091/2
BseDI
SecI
C^CNNGG
ER1081
BseGI
FokI (GGATG(N)9/13^) GGATG(N)2/0^
ER0871/2
BseJI
BsaBI
ER1711
GATNN^NNATC
Ligación
T4 DNA ligasa
VECTORES O PLASMIDOS
Son moléculas de AND
Con origen de replicación.
Muchas portan genes de resistencia
a antibióticos.
Pueden transferirse de una célula
a otra.
VECTOR DE CLONACION
Vectores
4363 pb
2686 pb
Vectores de expresión
PROMOTORES
Inducidos por diversos factores.
Inductores:
•Calor
•Fuente de carbono
•Presencia de algun compuesto
inductor
SELECCION
Operón lac
CLONACION DE UN GEN
TRANSFORMACION DEL PLASMIDO
ANALISIS DE LAS CLONAS
DIVERSA
Aisla enzimas de fuentes naturales
Obtiene muestras de diferentes regiones del mundo.
Aisla el ADN (metagenoma)
Construye bibliotecas genomicas
Caracteriza con equipos roboticos miles de clonas a la vez,
tanto sus capacidades cataliticas como sus propiedades
cineticas
Secuenciación del ADN
•Maxam-Gilbert
•Sanger
Expresión heteróloga
ENZIMAS
PRODUCCION DE ENZIMAS RECOMBINANTES
A NIVEL INDUSTRIAL (FERMENTACIONES)
INGENIERIA DE PROTEINAS
MUTAGENESIS SITIO DIRIGIDA
MUTAGENESIS POR PCR COMBINATORIO
Recombinant Chymosin
PROTEINAS DE LA LECHE
Chymosin Reaction
Recombinant Chymosin
Production
The problems outlined above for chymosin and its microbial substitutes
can be alleviated by cloning the bovine gene into a suitable production
strain and producing the enzyme by fermentation.
The most important decisions to be made were the choice of
host/vector system. There are several possibilities for aproduction host:
Eschrichia coli. E. coli is the favourite organism of molecular biologists
and is most frequently used in gene cloning experiments. The problem
with E. coli, however, is that recombinant proteins are frequently
synthesised as intracellular inclusion bodies, increasing process costs
cosiderably. Another issue with E. coli is that it is not generally
recognised as safe for human consumption.
Bacillus sp. Bacillus species are non-pathogenic and are used
industrially to produce several enzymes used in food processing such
as amylases. B. licheniformis could produce the chymosin, but the
signal sequences did not allow the secretion of the enzyme into the
medium. by addition of benzoic acid and the chymosin is isolated by
filtration.
Recombinant Chymosin Production
Lactococcus lactis. This host was chosen as it is already used in starter
cultures, but production levels were found to be very low.
Saccharomyces cerevisiae. Difficulties were experienced in achieving
high secretion rates in yeast.
Kluveromyces lactis. K. lactis is used for the production of dairy grade
beta-galactosidase and its fermentation properties are well understood.
It was found that the chtmosin could be produced in this host and good
levels of secretion into the medium were achieved.
The chymosin gene was inserted into the K. lactis chromosome and the
yeast is grown by fed-batch fermentation. After fermentation, the yeast
is killed by addition of benzoic acid and the chymosin is isolated by
filtration.