Download enero-abril vol. 23,n.º 1

Document related concepts
no text concepts found
Transcript
ENERO-ABRIL
VOL. 23, N.º 1
2 0 1 6
La grasa de la dieta y el riesgo cardiovascular
R. Carmena Rodríguez
Water mineralization and its importance for health
C. Ferreira-Pêgo, N. Babio, F. Maraver Eyzaguirre,
I. Vitoria Miñana, J. Salas-Salvadó
La publicidad alimentaria dirigida a menores
en España
M. J. Bosqued Estefanía, L. López Jurado, Á. Moya Geromini,
M. Á. Royo Bordonada
EQUIPO DE REDACCIÓN:
Presidente:
Prof. Luis Moreno
Presidente de Honor:
Prof. M. Serrano Ríos
Comité Editorial:
Prof. M. Foz
Prof. M. Juárez
Dra. C. López-Nomdedeu
Prof. J.M. Ribera
Comité Asesor:
Dr. J.P. Andorinha
Prof. M. Bueno
Prof. J. Cabo
Prof. R. Carmena
Dña. P. Cervera
Prof. J. Salas
Prof. F. Guarner
Prof. M.C. Vidal
D. G. Alegre
© Copyright 2016. Instituto Danone. C/. Buenos Aires, 21. 08029 Barcelona. Telf. 93 419 51 78.
www.institutodanone.es
Publicación trimestral. Reservados todos los derechos. Ninguna parte de esta publicación puede ser reproducida,
transmitida en ninguna forma o medio alguno, electrónico o mecánico, incluyendo fotocopias, grabaciones o cualquier
sistema de recuperación de almacenaje, información, sin el permiso por escrito del titular del Copyright.
Publicación autorizada por el Ministerio de Sanidad como Soporte Válido, Ref. S.V. 94028 R. ISSN: 1136-4815
Depósito Legal: M-10938-1994
Edita: ARÁN Ediciones, S.L. C/ Castelló, 128, 1.º. Tel. 91 782 00 35 - Fax 91 561 57 87 - 28006 MADRID
e-mail: [email protected] - http.//www.grupoaran.com
S
U
VOL. 23
M
A
R
ENERO-ABRIL 2016
I
O
N.º 1
Revisiones
La grasa de la dieta y el riesgo cardiovascular
R. Carmena
Catedrático Emérito de Medicina. Facultad de Medicina y Odontología.
Universidad de Valencia1
Water mineralization and its importance for health
C. Ferreira-Pêgo1,2, N. Babio1,2, F. Maraver Eyzaguirre3,
I. Vitoria Miñana4, J. Salas-Salvadó1,2
1
Human Nutrition Unit. Hospital Universitari de Sant Joan de Reus. Faculty of
Medicine and Health Sciences. Iispv (Institut D’investigació Sanitària Pere Virgili).
Biochemistry Biotechnology Department. Universitat Rovira i Virgili. Reus. 2Ciberobn
(Centro de Investigación Biomédica en Red Fisiopatología
de la Obesidad y Nutrición). Institute of Health Carlos III. Madrid. 3Professional
School of Medical Hydrology. Faculty Of Medicine, Complutense University,
Madrid. 4Nutrition and Metabolopathies Unit. Hospital La Fe. Valencia4
La publicidad alimentaria dirigida a menores en España
M. J. Bosqued Estefanía, L. López Jurado, Á. Moya Geromini,
M. Á. Royo Bordonada
Escuela Nacional de Sanidad. Instituto de Salud Carlos III. Madrid19
1136-4815/23/1-3
Alimentacion, Nutricion y Salud
Copyright © 2016 Instituto Danone
Alim. Nutri. Salud
Vol. 23, N.º 1, pp. 1-3, 2016
La grasa de la dieta y el riesgo cardiovascular
R. Carmena Rodríguez
CATEDRÁTICO EMÉRITO DE MEDICINA. FACULTAD DE MEDICINA Y ODONTOLOGÍA.
UNIVERSIDAD DE VALENCIA
Nuestros conocimientos sobre el papel que la grasa
desem­peña en la dieta, especialmente en lo referente a
su relación con las enfermedades cardiovasculares, se han
ido ampliando y modificando a la luz de recientes descubri­
mientos en nutrición. Desde mediados del pasado siglo, los
trabajos de Keys, Anderson y Grande (1) en la Universidad
de Minnesota y los del grupo de Hegsted en Harvard (2)
dejaron establecido que la ingesta de grasa saturada con­
tribuye significativamente a elevar el colesterol plasmático
total (CT), el colesterol de las lipoproteínas de baja densi­
dad (LDL-C) y la incidencia de accidentes coronarios is­
quémicos (angina de pecho, infarto de miocardio, muerte
súbita). Los ácidos grasos saturados (AGS), láurico (C12),
mirístico (C14), y palmítico (C16), quedaron identificados
como principales responsables de la elevación del colesterol
y del riesgo coronario.
Por otra parte, el contenido de colesterol en la dieta
influye sobre el colesterol plasmático (LDL-C) de forma
muy variable entre unos individuos y otros, dependiendo
especialmente de factores genéticos (fenotipo de apoli­
poproteína E, mutaciones de la proteína NPC1L1, etc.)
responsables de la absorción intestinal de colesterol (3).
En la especie humana la absorción intestinal del colesterol
procedente de la dieta es limitada, aproximadamente el
40%, aunque existen amplias diferencias interindividuales
que oscilan del 18 al 60%. Existe un valor umbral y un valor
techo de colesterol dietético, situados, aproximadamente,
a 100 y 500 mg de consumo diario (4). De ahí que, en
conjunto, se considere que el efecto del colesterol de la
dieta sobre el colesterol plasmático sea, comparado con lo
observado con los AGS, relativamente poco importante.
Así ha quedado recogido en las recientes recomendaciones
del Departamento de Salud y Agricultura de EE.UU., donde
no se fija un límite de contenido dietético en colesterol (5).
Durante las últimas décadas del siglo xx, las recomen­
daciones nutricionales han puesto un énfasis especial en
reducir la grasa total de la dieta para disminuir la ingesta
de AGS, ya que la mayor parte de la grasa dietética es
saturada de origen animal. En ese mismo sentido, se daba
por hecho que las dietas bajas en grasa serían también
menos calóricas y, de esta manera, contribuirían a atenuar
la ganancia ponderal. Sin embargo, lo ocurrido en EE. UU.
en los últimos decenios, según datos de la encuesta National
Health and Nutrition Examination Survey (6), contradice
esta aseveración, ya que, si bien la ingesta de grasa bajó del
37 al 30% de las calorías diarias, la incidencia de obesidad
ha ido en aumento en relación con el mayor consumo de
hidratos de carbono.
Los hallazgos de la investigación nutricional han expe­
rimentado una significativa expansión en la última década.
Dado que la grasa es un importante componente de la dieta,
consideramos oportuno analizar y revisar la situación actual
de la grasa de la dieta y su relación con la salud.
Las grasas de la dieta son una fuente principal de energía
y, según su composición química, se clasifican en triglicé­
ridos o triacilgliceroles (que son las grasas en sentido es­
tricto), fosfolípidos y colesterol. Los triacilgliceroles son los
más abundantes en los alimentos y constituyen el principal
componente (98%) de la grasa ingerida. La naturaleza y
localización de los AG sobre la molécula de glicerol determi­
nan su respuesta biológica. Recordemos que los triglicéridos
están formados por la unión de una molécula de glicerol
con tres ácidos grasos.
Los AG pueden ser saturados (AGS, no contienen ningún
doble enlace, nC:0) o insaturados, con un doble enlace,
AGM (monoinsaturados) o varios (poliinsaturados, AGP). La
mayoría de los AG que se encuentran en los alimentos posee
una configuración espacial cis. Mucho menos frecuente es la
configuración trans (los átomos de hidrógeno se encuentran
en el lado opuesto de un doble enlace), que se produce du­
rante la hidrogenación parcial de aceites vegetales o grasas
animales o por fermentación en el estómago (rumen) de
los rumiantes.
Desde el punto de vista del efecto sobre el colesterol plas­
mático, no todos los AGS son iguales. Como ya menciona­
mos, C12:0, C14:0 y C16:0 son los responsables de elevar
el CT y el LDL-C, mientras que el ácido esteárico (C18:0),
1
R. CARMENA RODRÍGUEZ
también saturado, carece de ese efecto. Los AGM, en los
experimentos y ecuaciones propuestas por Keys y Hegsted,
fueron considerados neutrales porque no elevaban el coleste­
rol. La recomendación de estos autores en aquella época fue
reducir los AGS y reemplazarlos por poliinsaturados.
En las últimas décadas, numerosos experimentos dieté­
ticos controlados en humanos han ido acumulando prue­
bas que modifican de forma sustancial las ideas que so­
bre la grasa de la dieta, el colesterol sanguíneo y el riesgo
cardio­vascular habían quedado establecidas desde los años
cincuenta del siglo pasado. Un cambio importante es el
producido con respecto a los AGM, cuyo supuesto efecto
neutral ha sido rectificado. Varios autores, entre los que
nos encontramos (7,8), han demostrado que las dietas en­
riquecidas en AGM (fundamentalmente aceite de oliva, con
alto contenido en ácido oleico, C18:n9) reducen el LDL-C
igual que hacen los AGP, pero además, a diferencia de estos
últimos, pueden elevar discretamente el colesterol de las
lipoproteínas de alta densidad (HDL).
Otra importante innovación es la ocurrida con el consu­
mo de grasas ricas en AG de configuración trans, anterior­
mente mencionados. Los AG con configuración espacial
trans, aunque sean insaturados, elevan la colesterolemia,
ejercen efectos adversos sobre la función endotelial y aumen­
tan el riesgo de enfermedades cardiovasculares (RCV) más
que los AGS. La concentración de estos AG se encuentra
de manera natural en la carne de rumiantes, en los produc­
tos lácteos y en alimentos elaborados con aceites vegetales
parcialmente hidrogenados, como las margarinas, patatas
fritas y galletas. Hasta finales del pasado siglo, los aportes
de AG trans en la dieta de los países industrializados podía
alcanzar cifras elevadas, de hasta 20-30 g/día. En las dos
últimas décadas, sin embargo, los avances tecnológicos en la
industria alimentaria han permitido elaborar productos con
un contenido muy bajo o prácticamente nulo en este tipo
de AG. De hecho, las margarinas consumidas en España ya
no contienen aceites parcialmente hidrogenados. Un estu­
dio reciente del Centro Nacional de Alimentación (Agencia
Española de Consumo, Seguridad Alimentaria y Nutrición)
determinó el perfil de AG de un amplio grupo de alimentos
consumidos habitualmente y se detectaron contenidos de
AG trans inferiores al 1% del total de AG.
ALIM. NUTRI. SALUD
de aporte diario de energía, con una reducción de hasta el
7% en el caso de las grasas saturadas. Sin embargo, varios
estudios (Women’s Health Initiative (9), con restricción del
consumo de grasa < 20% de las calorías diarias, o el estudio
Look AHEAD (10), con menos del 28% de ingesta diaria de
grasa) han mostrado resultados decepcionantes en cuanto a
la reducción de enfermedades cardiovasculares se refiere. Se
ha reafirmado el concepto de que una dieta baja en grasa y,
por tanto, rica en hidratos de carbono, es inútil para reducir
el RCV.
En el mismo sentido, algunos metaanálisis han puesto en
duda esas recomendaciones al demostrar que el consumo de
grasas saturadas no guardaba relación con la incidencia de en­
fermedad coronaria isquémica y que el enfoque reduccionista
clásico no parece válido cuando se aplica a la nutrición, dadas
las complejas y numerosas interacciones entre los nutrientes
una vez ingeridos. Los alimentos tienen una composición muy
diversa y considerar únicamente un macronutriente (AGS, por
ejemplo) puede conducir a interpretaciones erróneas de los
resultados. Datos recientes apoyan la conclusión de que dis­
tintos AGS tienen asociaciones diferentes con el RCV y que
al atribuir a las grasas saturadas en conjunto efectos nocivos
para la salud, como se ha venido haciendo tradicionalmente,
se está ignorando que sus asociaciones heterogéneas con
otros nutrientes pueden llegar a resultar beneficiosas.
Numerosos investigadores en este campo recomiendan
adoptar una visión más holística de la nutrición, recordando
que nuestros organismos han evolucionado sobre la base de
ingerir mezclas de alimentos y no macronutrientes aislados.
El enfoque de la investigación nutricional sobre nutrientes
aislados ha llevado a una contraproducente confusión. En
una reciente monografía, Campbell y Jacobson (11) sostie­
nen que “la creencia de que podemos investigar los efectos
de un nutriente de forma aislada, sin tener en cuenta sus
potenciales modificaciones por otros factores químicos,
roza la temeridad”.
Dentro del amplio grupo de AGP, los n-6 se encuentran
en los aceites de semillas como girasol, maíz o soja, frutos
secos y margarinas y su principal representante es el ácido
linoleico (C18:2n-6). Cuando sustituyen a dietas ricas en
AGS o en hidratos de carbono, los AGP n-6, como de­
mostraron los trabajos de Keys y cols. (1), disminuyen la
colesterolemia y su ingesta se considera beneficiosa para
reducir el RCV. En este mismo sentido, los AGP n-3, de
cadena larga y origen marino, como el eicosapentaenoi­
co (C20:5n-3) y el docosahexaenoico (C22:6-n3), ejercen
también una acción cardioprotectora. Su principal fuente
en la alimentación son los pescados ricos en grasa (> 5%),
como el atún, salmón, sardina, caballa, boquerón y anchoa.
Por tanto, las recomendaciones dietéticas deberían ba­
sarse, a partir de ahora, en el consumo de determinados
alimentos considerados cardiosaludables, abandonando el
enfoque restrictivo sobre macronutrientes concretos. Los
positivos resultados del estudio PREDIMED (12) han de­
mostrado los beneficios de una dieta mediterránea, de alto
contenido en grasa (más del 35% de la energía diaria) su­
plementada con aceite de oliva extra virgen o con frutos
secos, para la prevención de enfermedades cardiovascula­
res, síndrome metabólico y diabetes de tipo 2. Como con­
secuencia, parece lógico que, a partir de ahora, las guías
nutricionales deberán poner más énfasis en recomendar la
ingesta de alimentos típicamente consumidos en la dieta
mediterránea, incluyendo aceite de oliva, pescado, legum­
bres, hidratos de carbono complejos, verduras, fruta, frutos
secos, etc., que en fijar puntos de corte excesivamente res­
trictivos sobre el consumo de determinados macronutrien­
tes, con excepción de los AG trans, cuya ingesta no debe
superar el 1% de la energía total.
A la luz de nuestros conocimientos actuales, las recomen­
daciones sobre el contenido de grasa de la dieta, basadas en
las investigaciones de Keys, Hegsted y otros, parecen ex­
cesivamente restrictivas, ya que se situaban entre 20-25%
Actualmente no existen dudas sobre el hecho de que la
calidad de la grasa de la dieta es mucho más importante que
su cantidad. Diferentes AG derivados de distintos alimentos no
producen necesariamente el mismo efecto biológico, ya que
2
Vol. 23, N.º 1, 2016
la composición global del alimento del que proceden modifica
su efecto. La leche es un alimento complejo, con gran varie­
dad de nutrientes, y el cambio de posición con respecto a la
grasa de la leche y los productos lácteos constituye un claro
ejemplo. La grasa láctea contiene un 60-70% de AGS, 25%
de AGM y 5% de AGP, con 1-4% de AG de configuración
trans (13). Un hallazgo importante ha sido la constatación de
que la ingesta de los AGS de cadena impar de átomos de car­
bono, como el ácido pentadecanoico (C15:00) y el heptadeca­
noico (C17:00), presentes en la leche y sus derivados, ejerce
un efecto protector frente al riesgo de cardiopatía isquémica
o de diabetes de tipo 2 (14). Un reciente estudio, utilizando
como biomarcadores de la ingesta láctea a esos dos AGS
y al ácido trans palmitoleico (C16:1n-7), no ha demostrado
asociación entre el consumo de productos lácteos y el riesgo
cardiovascular (15). Parece posible que el contenido de estos
AGS de cadena impar en la grasa de la leche contribuya a
reducir la resistencia a la insulina, el riesgo cardiovascular y la
diabetes de tipo 2 y que estos beneficios se extiendan también
al consumo de quesos y de yogurt (16). Numerosos estudios
epidemiológicos no han aportado pruebas que apoyen las re­
comendaciones de limitar el consumo de lácteos para prevenir
las enfermedades cardiovasculares y la diabetes de tipo 2 (17).
La falta de asociación entre el consumo de productos lácteos
y las enfermedades cardiovasculares o diabetes obliga a mo­
dificar la imagen nutricional, tradicionalmente adversa, de la
grasa láctea sobre dichos procesos (18).
En resumen, el enfoque estrictamente reduccionista de
la nutrición puede conducir a silogismos erróneos, como ha
ocurrido con respecto al riesgo cardiovascular y el contenido
de grasa de la dieta, sometido a restricciones que hoy care­
cen de validez (19). Es cierto que la grasa de la dieta tiene
una profunda influencia sobre la salud, especialmente en el
campo de las enfermedades cardiovasculares, sin olvidar que
la calidad de la grasa es más importante que su cantidad. Pero
no todas las grasas saturadas poseen el mismo efecto sobre los
valores de la colesterolemia y el posible riesgo cardiovascular;
son los AGS con cadena de 12, 14 y 16 átomos de carbono
los principales responsables de elevar el LDL-C. Además, exis­
ten subtipos de AGS de cadena impar como los que están pre­
sentes en la leche, cuyo consumo no eleva la colesterolemia ni
el riesgo cardiovascular. En un reciente consenso español (20)
sobre este tema, se concluye que las dietas altas en grasa total
pueden ser beneficiosas para la salud siempre y cuando la
mayor parte de la grasa sea monoinsaturada y poliinsaturada.
Por tanto, puede consumirse una dieta rica en grasa en vez
de alta en carbohidratos sin ningún peligro para la salud y
con posibilidad de mejorarla, siempre que se trate de grasas
insaturadas de procedencia vegetal, tomando en consideración
lo anteriormente mencionado sobre los beneficios aportados
por la grasa de la leche y derivados●
CORRESPONDENCIA:
Rafael Carmena Rodríguez
Universidad de Valencia
Facultad de Medicina y Odontología
Av. de Blasco Ibáñez, 15,
46010 Valencia
[email protected]
LA GRASA DE LA DIETA Y EL RIESGO CARDIOVASCULAR
BIBLIOGRAFÍA
1. Keys A, Anderson TJ, Grande F. Serum cholesterol response to
changes in the diet. Particular saturated fatty acids in the diet.
Metabolism 1965;14:776-86.
2. Hegsted DM, McGandy RB, Myers ML, et al. Quantitative
effects of dietary fat on serum cholesterol in man. Am J Clin
Nutr 1965;17:281-91.
3. Myocardial Infarction Genetics Consortium Investigators. Inactivating mutations in NPC1L1 and protection from coronary
heart disease. N Engl J Med 2014;371:2072-82.
4. Carmena R, Ordovas JM. Tratamiento dietético de las hiperlipoproteinemias. En: Hiperlipemias: clínica y tratamiento.
R Carmena, JM Ordovás, editores. Doyma, Barcelona; 1999.
p. 203-15.
5. 2015 Dietary Guidelines Advisory Committee. Advisory report
to the Secretary of Health and Human Services and Secretary
of Agriculture. Published February 2015. http://www.healthg.
gov/dietaryguidelines/2015-scientific-report/PDFs
6. National Health and Nutrition Examination Survey: questionnaires, datasets, and related documentation. Atlanta: Centers
for Disease Control and Prevention. 2011, at http://www.cdc.
gov/nchs/nhanes/nhanes
7. Ascaso JF, Carmena R. Importancia de la dislipidemia en la
enfermedad cardiovascular: un punto de vista. Clin Invest Arterioscler 2015;27:301-8.
8. Carmena R, Ascaso JF, Camejo G, et al. Effect of olive and
sunflower oils on low density lipoprotein level, composition,
size, oxidation and interaction with arterial proteoglycans. Atherosclerosis 1996;125:243-55.
9. Howard BV, Van Horn L, Hsia J, et al. The Women’s Health
Initiative Randomized Controlled Dietary Modification Trial.
Low-fat dietary patterns and risk of cardiovascular disease.
JAMA 2006;295:655-66.
10. Look AHEAD Research Group, Wing RR, Bolin P, Brancati FL,
et al. Cardiovascular effects of intensive lifestyle intervention in
type 2 diabetes. N Eng J Med 2013;369:145-54.
11. Campbell TC, Jacobson H. Whole; rethinking the science of
nutrition. BenBella Books Inc: Dallas, Texas, USA; 2013.
12. Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of
cardiovascular disease with a Mediterranean diet. N Eng J Med
2013;368:1279-90.
13. Calvo MV, Castro-Gómez MP, García-Serrano A, et al. Grasa
láctea: una fuente natural de compuestos bioactivos. Alim Nutr
Salud 2014;21:57-63.
14. Astrup A. A changing view on saturated fatty acids and dairy:
from enemy to friend. Am J Clin Nutr 2014;100:1407-8.
15. Yakoob MY, Shi P, Hu F et al. Circulating biomarkers of dairy fat
and risk of incident stroke among US men and women in two
large prospective cohorts. Am J Clin Nutr 2014;100:1437-47.
16. Soedamah-Muthu SS, Ding EL, Al-Delaimy WK et al. Milk and
dairy consumption and incidence of cardiovascular diseases
and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Am J Clin Nutr 2011;93:158-71.
17. Forouhi NG, Koulman A, Sharp SJ et al. Differences in the
prospective association between individual plasma phospholipids saturated fatty acids and incident type 2 diabetes: the
EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol
2014; 2:810-18.
18. Fontecha J, Rodríguez-Alcalá LM, Calvo MV et al. Bioactive
milk lipids. Current Nutr and Food Sci 2011;7:155-9.
19. Jacobs DR, Tapsell LC. What an anticardiovascular diet should
be in 2015. Curr Opin Lipidol 2015;26:270-5.
20. Ros E, López-Miranda J, Picó C et al. Consenso sobre las
grasas y aceites en la alimentación de la población española adulta; postura de la Federación Española de Sociedades
de Alimentación, Nutrición y Dietética (FESNAD). Nutr Hosp
2015;32:435-77.
3
1136-4815/23/4-18
Alimentacion, Nutricion y Salud
Copyright © 2016 Instituto Danone
Alim. Nutri. Salud
Vol. 23, N.º 1, pp. 4-18, 2016
Water mineralization and its importance for health
C. Ferreira-Pêgo1,2, N. Babio1,2, F. Maraver Eyzaguirre3, I. Vitoria Miñana4,
J. Salas-Salvadó1,2
HUMAN NUTRITION UNIT. HOSPITAL UNIVERSITARI DE SANT JOAN DE REUS. FACULTY
OF MEDICINE AND HEALTH SCIENCES. IISPV (INSTITUT D’INVESTIGACIÓ SANITÀRIA PERE
VIRGILI). BIOCHEMISTRY BIOTECHNOLOGY DEPARTMENT. UNIVERSITAT ROVIRA I VIRGILI.
REUS. 2CIBEROBN (CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED FISIOPATOLOGÍA DE LA
OBESIDAD Y NUTRICIÓN). INSTITUTE OF HEALTH CARLOS III. MADRID. 3PROFESSIONAL SCHOOL
OF MEDICAL HYDROLOGY. FACULTY OF MEDICINE, COMPLUTENSE UNIVERSITY, MADRID.
4
NUTRITION AND METABOLOPATHIES UNIT. HOSPITAL LA FE. VALENCIA
1
RESUMEN
E
ABSTRACT
W
l agua es esencial para la vida, ya que participa en el
metabolismo de todos los seres vivos. En los últimos años
el consumo de agua del grifo ha disminuido y el consumo
de agua embotellada ha aumentado a escala mundial. La
composición mineral del agua mineral natural es conocida
y constante durante el año, y sus efectos potenciales sobre
la salud deben ser determinados. Solamente el magnesio,
calcio y sodio están presentes en el agua en cantidades
suficientes para complementar la dieta. Dado que la biodisponibilidad de calcio y magnesio en el agua es comparable a
la de otros alimentos, el consumo de agua puede contribuir
a la ingesta diaria de estos minerales. Por lo tanto, incluir
el agua mineral en la dieta puede ser una forma válida de
complementar la ingesta de calcio y magnesio, y de esta
manera cubrir las recomendaciones dietéticas diarias de
estos nutrientes.
ater is essential for life, participating in the
metabolism of all the living organisms. In recent years,
the consumption of tap water has decreased and the
consumption of bottled water has increased worldwide.
The mineral quality and composition of natural mineral
water is known and constantly over the year, and their
potential effects on health must be determined. Only
magnesium, calcium and sodium are present in water in
sufficient quantities to complement the diet. Given that
the bioavailability of calcium and magnesium in water is
comparable to that of other foods, the consumption of
water can contribute to the daily intake of these minerals.
Therefore, including natural mineral water in the diet may
be a valid way of complementing calcium and magnesium
intake, and complying with the daily dietetic recommendations of these nutrients.
Palabras clave: Agua. Mineralización. Calcio. Magnesio.
Salud.
Key words: Water. Mineralization. Calcium. Magnesium.
Health.
INTRODUCTION, DEFINITIONS
AND TYPES OF WATER
In the last two decades, the consumption of tap water has
decreased and, at the same time, the consumption of bottled
natural mineral water has increased significantly all over the
world because of the growing concern that certain water components or contaminants can affect health (1,2). For this reason, the scientific community is taking more interest in studying how the consumption of bottled water can affect health.
4
It is recognized that the main source of minerals is food,
however some types of water can be an important source
of them contributing to cover recommendations. Water can
be regarded both as an essential nutrient for hydration, and
also as a food, because it contains several nutrients (calcium,
magnesium, sodium, etc.). It cannot accumulate in the body
so it must be ingested several times during the day. And
depending on its chemical composition and the amount
consumed, it can also be a significant source of minerals (3).
The quality and composition of tap and bottled waters vary
enormously around the world (2-4).
Vol. 23, N.º 1, 2016
WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH
Of the minerals present in water, only one small group
deserves special attention because of their possible effect
as a complement to dietary intake. These minerals are essential for health and are mainly magnesium, calcium and
sodium (4).
Bottled drinking waters have different chemical compositions and can therefore be classified in a variety of ways.
Table I shows the classification of bottled natural mineral
waters in Spain according to Royal Decree 1798/2010,
BOE no. 16, of 19 January 2011 (5).
According to the definition of the World Health Organization (WHO), very weakly mineralized water is practically or
completely free of dissolved minerals, sometimes as a result
of distillation, deionization, membrane filtration, electrodialysis or some other technology (4). At the other extreme,
highly mineralized water is generally defined as water that
contains a high concentration of calcium and magnesium
ions and bicarbonates. The most common sources of
hardness in water are the minerals found in the aquifer:
limestone, which is the source of calcium, and dolomite,
which is the source of magnesium. Nevertheless, hardness
can be caused by such other dissolved metals as aluminum,
barium, strontium, iron, zinc and manganese. Normally,
monovalent ions such as sodium and potassium do not
determine the hardness of water (6). However, these definitions cannot be applied to natural mineral waters, since
Royal Decree 1798/2010 states that the mineralization
of this type of water cannot be modified artificially. In this
regard, natural mineral waters can be subject only to the
following operations:
• Separation of unstable natural elements, such as sulfur and iron compounds, by filtration or decantation,
preceded in each case by oxygenation, as long as the
composition of those constituents of the water that
provide it with its essential properties is not modified.
• Separation of iron, manganese and sulfur compounds,
and arsenic, in some natural and spring mineral waters
by ozone-enriched air, as long as the composition of
those constituents of the water that provide it with its
essential properties is not modified and the handler
adopts all the measures necessary to guarantee the
effectiveness and innocuity of the process, and notifies
the health authorities so that appropriate control can
be exercised.
At present, there are considerable variations in the mineral content of the bottled waters available in Spain, so it
is essential to understand the potential effects that these
minerals can have on an individual’s health (1). This information is absolutely necessary if the benefits or risks of
certain bottled waters are to be determined.
Drinking water is often subdivided into bottled drinking
water and water for human consumption or tap water. According to Royal Decree 140/2003, of 7 February, which
establishes the health criteria for the quality of water for
human consumption (8), drinking water is regarded as:
• All water, whether in its original state or after treatment,
used for drinking, cooking, preparing food, personal
hygiene and other household purposes, whatever its
origin and independently of whether it is supplied to
the consumer by public or private distribution networks,
cisterns and/or public or private deposits.
• All water used in the food industry for purposes of
making, treating, conserving or commercializing products or substances for human consumption, as well as
that used for cleaning surfaces, objects and materials
that may come into contact with foodstuffs.
• All water supplied for human consumption as part of
a commercial or public activity, regardless of the mean
daily volume supplied.
Water for human consumption can come from any
source, as long as it does not involve a risk to the health of
the people it is supplied to (8). Normally this sort of water
comes from rivers, reservoirs, desalination plants or even
wells. Its chemical and mineral composition varies over time
and can depend on its source and any potabilization treatments it is subject to.
Bottled water, on the other hand, can be divided into
three types: natural mineral water, spring water and prepared water.
Natural mineral water is microbiologically healthy water
which comes from an underground stratum or deposit. It
comes to the surface in the form of a spring or can be collected artificially by means of a probe, a well, a pit or gallery
or any combination of these. It can be clearly distinguished
from other ordinary drinking water because of (5):
• Separation of fluoride by activated alumina in natural
mineral waters and spring waters (5,7).
• its content of minerals, dietary elements and other
components and, on occasions, particular effects it
may have,
TABLE I
SPANISH NATURAL MINERAL WATER CLASSIFICATION
Reference
Criteria for making the references based on content
Very low mineralized water
Up to 50 mg/L of dry residue
Low mineralized water
Up to 500 mg/L of dry residue
Medium mineralized water
Between 500 mg/L and 1,500 mg/L of dry residue
Highly mineralized water
More than 1,500 mg/L of dry residue
5
C. FERREIRA-PÊGO, ET AL.
• its chemical constancy and,
• its original purity, given the fact that it is from an
underground source that has provided natural protection against all risk of contamination.
As has been mentioned in the introduction to this review,
natural mineral waters are classified according to their mineral composition: very low mineralization, low mineralization, medium mineralization and high mineralization. This
classification is specific to natural mineral waters and must
not be used to define or classify other types of water, like tap
water. It is important to highlight that in Spain, the majority
of the Natural Mineral Waters consumed and sold presents
a low mineralization.
Spring waters flow spontaneously from underground
sources to the surface or are collected. They are naturally pure and can therefore be consumed. They remain
pure because, being from an underground source, they
are naturally protected by the aquifer from any risk of
contamination (5). What is more, constancy of the chemical and mineral composition of these waters cannot be
guaranteed.
Prepared drinking water is that which comes from a
fountain or is collected, and is then subject to treatment so
that it can be drunk. It is this treatment that means it can
no longer be classified – if it ever was – as spring water or
natural mineral water, and can never again opt to be classified as such (9). Just like tap water, its chemical and mineral
composition is not always constant, which means that it is
not always known and well described.
Finally, water can be bottled and distributed to households for public consumption in special circumstances, with
the sole purpose of compensating for temporary deficiencies in the general public water supply (9). The mineral
composition of drinking water can depend heavily on local
geological conditions.
WATER RECOMMENDATIONS
Water plays a crucial role for life and health, and is also
fundamental if human tissues are to function properly (10).
According to the European Food Safety Agency
(EFSA), the recommended daily intake of water is the
minimum amount required to balance the loss of fluids
in the human body (11). The water ingested daily comes
from both different types of drink and food. At present it
is thought that food provides approximately 20% of the
daily water needs and drinks the remaining 80%. The
EFSA set the daily recommendations for water intake for
Europeans at 2.5 liters for men and 2.0 liters for women
over 14 years of age, from both food and drink. If only
drinks are to be considered, the recommended amount
of water would be 2.0 liters/day for men and 1.6 liters/
day for women (10). These recommendations need to be
6
ALIM. NUTRI. SALUD
increased by 300 mL/day and 700 mL/day for pregnant
and lactating women, respectively.
These amounts of water would cover the needs related to
exercise, sweating and solute overload, all of which increase
the need for liquid. Exposure to cold does not modify the
need for water, but exposure to heat and stress increases
it (12).
MINERAL CONTENT IN WATER:
CONTRIBUTION TO WATER
RECOMMENDATIONS
DIFFERENCES IN THE MINERAL
COMPOSITION OF WATER
Several authors have described considerable differences in the mineral composition of bottled water and tap
water (2,4). There are also considerable differences in the
mineral content of tap water between countries and even
within the same country (2).
Table II shows the results (expressed as median [P25,
P75] and mean) of an analysis of 75 different types of
natural mineral waters on sale in Spain (data obtained from
labels, the website of the respective brands or the website
www.aguainfant.com).
Francisco Maraver, a lecturer at the Complutense University in Madrid, and Isidro Vitoria Miñana, from the Hospital La Fe (Valencia), analyzed 109 natural mineral waters
on sale in Spain (14 of which are carbonated). Samples
were analyzed at environment temperature. The results of
this analysis expressed as median [25th and 75th percentiles]
and (mean) can be seen in table III.
As can be seen from the data in tables II and III for waters
in Spain, there are considerable variations in the chemical composition of natural mineral waters within the same
country. The mean content of magnesium in still natural
mineral waters varies from 1.8 to 107.3 mg/L, the content
of sodium from 3.6 to 1,740.5 mg/L, and the content of
calcium from 3.8 to 399.6 mg/L.
Substantial variations in the concentrations of the three
most common minerals in natural mineral waters have also
been published (1). In their study, these authors reported
that the content of magnesium in bottled waters could
vary from 0 to 126 mg/L, the content of sodium from
0 to 1,200 mg/L and the content of calcium from 0 to
546 mg/L. These variations may be due to the particular
features of each spring (geological profile, residence time
and temperature) which determine the specific composition
of the water. It should also be remembered that the mineral composition of a spring is constant over time, so the
mineral composition of natural mineral water is also always
constant. The same cannot be said of tap water since its
composition generally varies throughout the year.
Vol. 23, N.º 1, 2016
WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH
TABLE II
CONTENT OF SODIUM, CALCIUM AND MAGNESIUM IN 75 DIFFERENT TYPES OF NATURAL MINERAL WATER
ON SALE IN SPAIN
Na (mg/L)
Ca (mg/L)
Mg (mg/L)
Very low mineralized water (n = 6)
3.1 [1, 5.6] (3.3)
2.4 [0.8, 4.2] (2.5)
1.7 [0.7, 2.3] (1.6)
Low mineralized water (n = 55)
11.7 [5.2, 30] (20.2)
50 [27, 73.7] (51.3)
10.9 [5, 18] (12.3)
Medium mineralized water (n = 5)*
39.5 [7.1, 170] (57.8)
92 [70.5, 161.9] (101.9)
36.5 [11.7, 39.9] (29.1)
Highly mineralized water (n = 4)*
892 [568, 1138] (872.5)
67.4 [47, 219] (100.2)
27.8 [0.0, 77.0] (33.2)
Still bottled waters (n = 70)
Carbonated natural mineral waters (n = 5)
Low mineralized water (n = 4)*
15.5 [1, 38.5] (17.6)
39.5 [27.7, 86.6] (48.3)
10.5 [2.5, 23.3] (11.7)
Highly mineralized water (n = 1)*
1115 [1115, 1115] (1115)
53.7 [53.7, 53.7] (53.7)
9.2 [9.2, 9.2] (9.2)
Median [P25, P75], except *Median [min, max] and (mean).
TABLE III
CONTENT OF SODIUM, CALCIUM AND MAGNESIUM IN 109 DIFFERENT TYPES OF NATURAL MINERAL
WATERS ON SALE IN SPAIN (UNPUBLISHED DATA SUPPLIED BY THE COMPLUTENSE UNIVERSITY
IN MADRID AND HOSPITAL LA FE IN VALENCIA)
Na (mg/L)
Ca (mg/L)
Mg (mg/L)
Very low mineralized water (n = 7)
3 [1.5, 6] (3.6)
3.3 [1.9, 6.6] (3.8)
1.4 [0.9, 2.3] (1.8)
Low mineralized water (n = 75)
10 [3.4, 21.4] (18.7)
39.6 [24.3, 65.2] (43.3)
9.3 [3.9, 18.1] (12.2)
Medium mineralized water (n = 11)
37.5 [32.2, 81.8] (59.5)
90.1 [74.1, 154.1] (108.16)
38.6 [19.5, 51.9] (39)
Highly mineralized water (n = 2)*
1740.5 [717, 2764] (1740.5) 399.6 [189.1, 610.2] (399, 6)
Still bottled water (n = 95)
107.3 [73.4, 141.2] (107.3)
Carbonated bottled waters (n = 14)
Low mineralized water (n = 3)*
42.4 [19.7, 114.9] (59)
Medium mineralized water (n = 2)*
187.1 [156.9, 217.2] (187.1) 111.6 [82.8, 140.4] (111.6)
57.8 [11.7, 80.3] (49.9)
71 [60.4, 81.6] (71)
Highly mineralized water (n = 9)
706 [558.8, 1092.1] (820.3)
12.9 [7.9, 36.6] (22.1)
56.9 [15, 96.9] (59)
27.6 [6.2, 34.7] (22.8)
Median [P25, P75], except *Median [min, max] and (mean).
RECOMMENDATIONS ON THE INTAKE
OF KEY MINERALS: MAGNESIUM, CALCIUM
AND SODIUM
Table IV shows the daily intakes of magnesium, calcium and sodium recommended by the Institute of Medicine (IOM) (13) adapted to the world population.
Also with reference to the Spanish population, table V
shows the latest dietary intakes of magnesium, calcium and
sodium recommended by FESNAD (Spanish Federation of
Societies of Nutrition, Diet and Dietetics) (14).
CONTRIBUTION OF DRINKING WATER
TO MINERAL RECOMMENDATIONS
All over the world it is becoming increasingly common
for the daily intake of calcium and magnesium to be inadequate. In Spain, according to data from the National Survey on Dietary Intake (ENIDE) carried out in 2011, about
20-30% of the population (a percentage that can reach as
high as 82% in women between 45 and 64 years of age)
have an inadequate intake of calcium. And the percentage
of the population with inadequate intakes magnesium is
about 30%. Nevertheless, intakes of sodium have been ob-
7
C. FERREIRA-PÊGO, ET AL.
ALIM. NUTRI. SALUD
TABLE V
TABLE IV
DAILY INTAKES OF SODIUM, CALCIUM
AND MAGNESIUM RECOMMENDED BY IOM
Na
(mg/day)
Ca
(mg/day)
Mg
(mg/day)
≤ 6 months
120
200
30
6-12 months
370
260
75
1-3 years
1,000
700
80
4-8 years
1,200
1,000
130
9-13 years
1,500
1,300
240
14-18 years
1,500
1,300
410
19-30 years
1,500
1,000
400
31-70 years
1,500
1,000
420
> 70 years
1,500
1,200
420
14-18 years
1,500
1,300
19-30 years
1,500
31-50 years
Age
Males
DAILY INTAKES OF MAGNESIUM, CALCIUM AND
SODIUM RECOMMENDED BY FESNAD FOR THE
SPANISH POPULATION
Age
≤ 6 months
7-12 months
Na
(mg/day)
Ca
(mg/day)
Mg
(mg/day)
120
400
40
370
525
75
1-3 years
1,000
600
85
4-5 years
1,200
700
120
6-9 years
1,200
800
170
10-13 years
1,500
1,100
280
Males
14-19 years
1,500
1,100
350
20-49 years
1,500
900
350
50-59 years
1,300
900
350
360
60-69 years
1,300
1,000
350
1,000
310
≥ 70 years
1,200
1,000
350
1,500
1,000
320
Females
≥ 51 years
1,500
1200
320
10-13 years
1,500
1,100
250
Pregnancy
1,500
1,000-1,300
350-400
14-19 years
1,500
1,100
300
310-360
20-49 years
1,500
900
300
50-59 years
1,300
1,000
300
60-69 years
1,300
1,000
320
≥ 70 years
1,200
1,000
320
Pregnancy
1,500
1,000
360
Breastfeeding
1,500
1,200
360
Females
Breastfeeding
1,500
1,000-1,300
served to be above the daily recommended amounts (15).
The consumption of weakly, medium or strongly mineralized water, which contain considerable amounts of calcium and magnesium can increase the total intake of minerals, and bring it closer to the recommendations (4).
It is certainly true that the contribution of magnesium in
water to total intake is small in comparison to the amount
consumed through food. Even so, two liters of water with
35 mg/L of magnesium can provide 20% of the recommended 350 mg/day. In comparison, two liters of water
with less than 10 mg/L of magnesium can provide less
than 10% of daily needs. The same can be said of calcium
since a liter of strongly mineralized water can provide approximately 15% of daily needs. The situation for sodium
is different since strongly mineralized water contains a very
high amount of this mineral. Thus, a liter of water that
provides 890 mg of sodium would provide about 60% of
daily intake. However, most of the weakly mineralized bottled waters analyzed in this study contain no more than
20 mg/L of sodium. Therefore, the regular consumption
of natural mineral waters rich in magnesium could make a
significant contribution to the nutritional recommendations
of magnesium and sodium (16). It should be pointed out
that the Spanish population was observed to consume an
excessive amount of sodium only from food (15).
Using the mean content of sodium, calcium and
magnesium of 109 bottled natural mineral waters listed
8
above (Table III), we calculated the extent to which they
matched the recommendations of calcium, magnesium and
sodium. We created four examples (boy and girl between 10
and 13 years of age, and adults of both sexes), for which we
used the EFSA’s recommendations for daily liquid consumption (1,680 mL for boys, 1,520 mL for girls, 1,600 mL
for women and 2,000 mL for men) and the FESNAD’s
recommendations for the daily intake of these minerals.
The results are displayed in table VI.
This analysis reveals that different types of water provide different amounts of minerals. For example, depending
on the mineralization and the sex and age of the person,
still bottled waters can provide between 0.5 and 88.8% of
calcium and between 0.9 and 65.3% of the daily recommendation of magnesium. And carbonated bottled waters
can provide between 6.9 and 24.8% of the recommended
daily intake of calcium, and between 12.2 and 43.2% of
magnesium, depending on the mineralization of the water.
Several factors influence the nutritional contribution of
mineral intake through water, either at the individual or the
Vol. 23, N.º 1, 2016
WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH
TABLE VI
EXTENT TO WHICH WATER INTAKE MATCHES RECOMMENDATIONS FOR MINERAL INTAKE
Boys (%)
Girls (%)
Women (%)
Men (%)
Still natural mineral waters
Na
Ca
Mg
Very low mineralized water
0.41
0.37
0.39
0.48
Low mineralized water
2.10
1.90
2.00
2.50
Medium mineralized water
6.67
6.03
6.35
7.94
Highly mineralized water
194.93
176.37
185.65
232.06
Very low mineralized water
0.57
0.52
0.67
0.84
Low mineralized water
6.62
5.99
7.70
6.93
Medium mineralized water
16.52
14.94
19.23
24.03
Highly mineralized water
61.03
55.22
71.04
88.80
Very low mineralized water
1.06
1.07
0.94
1.00
Low mineralized water
7.32
7.42
6.51
6.97
Medium mineralized water
23.42
23.74
20.82
22.31
Highly mineralized water
64.40
65.26
57.25
61.34
7.87
Carbonated natural mineral waters
Na
Ca
Mg
Low mineralized water
6.61
5.98
6.30
Medium mineralized water
20.95
18.95
19.95
24.94
Highly mineralized water
91.87
83.12
87.49
109.37
Low mineralized water
7.62
6.90
8.87
11.09
Medium mineralized water
17.05
11.31
19.84
24.80
Highly mineralized water
8.59
8.16
10.50
13.12
Low mineralized water
13.70
13.89
12.18
13.05
Medium mineralized water
42.61
43.17
37.87
40.58
Highly mineralized water
13.26
13.44
11.79
12.63
population level, because it depends not only on the individual but also on the source, the amount and the frequency
of the consumption. So the general benefits on health will
depend on the total intake of liquids and other factors, as
well as the mineral composition of the water (2,3).
A control case study carried out in France on 240 men
and 424 women, using data from the SU.VI.MAX cohort,
determined the contribution made by the consumption
of natural mineral waters to the daily intake of calcium
and magnesium. The population was divided into four
groups (n = 166/group): regular drinkers of natural mineral
water rich in magnesium and calcium, drinkers of medium
mineralized water, drinkers of weakly mineralized water,
and drinkers of tap water. The results showed that, depending on the concentration of calcium, natural mineral
water can contribute a quarter of the total daily intake and,
depending on the concentration of magnesium, can contribute between 6 and 17% of the total daily intake. The
authors argue that natural mineral water can contribute
significantly to the total intake of magnesium and calcium.
They also point out that it can be a useful strategy for
nutrition and dietary professionals to increase the calcium
intake of patients who do not consume dairy products (17).
The people who can benefit from the minerals present in
drinking water are those who have diets that are lacking in the minerals in question: for example, in areas of the
world where food is in short supply or where there are no
programs of public health for nutrient supplementation. In
those cases in which the mean intake of nutrients is below
the dietary reference intake (DRI), the minerals provided by
natural mineral water could be a supplement. Therefore,
water with lower concentrations of these elements may be
sufficient to benefit general health in some areas of the
world, but higher concentrations are required if any effect
is to be observed in other areas with greater needs (4).
Nevertheless, drinking water can be an extra source of minerals not only in developing countries but also in developed
countries. In Spain, for example, part of the population has
been observed to have an inadequate intake of calcium and
magnesium (15).
9
C. FERREIRA-PÊGO, ET AL.
Nevertheless, is important to emphasise that the first
priority in developing countries is to have potable water
availability and not the quality of the mineral content.
However the mineral content in drinking water must be
considered important in designing public health programs
in these countries.
Although research has been limited, the studies reviewed
highlight that water that is rich in minerals functions as a
supplement but never as a substitute for the calcium and
magnesium provided by food, and contributes to general balance and nutrition (2-4,6,16). More accurate data is
required and studies of greater scientific relevance need to
be carried out on the impact of the consumption of natural
mineral water and its composition under a wider range of
physiological and climatic conditions for the most vulnerable
sectors of the population. This would enable us to assess
more accurately the influence that the minerals in water
have on health and sickness.
BIOAVAILABILITY OF WATER
MINERALS
CALCIUM BIOAVAILABILITY
Only about 0.1% of total body calcium is found in the
extracellular liquid, about 1% of total body calcium is
found inside the cells and the rest is stored in bones and
teeth (18). This store can be as much as 99% of total body
calcium, which functions as a key structural element (3).
In this regard, bones act as great calcium reserves: they
store it when there is an excess but also release it when
the concentration in the extracellular liquid decreases.
The body’s calcium reserve is special in comparison with
other minerals because it is also functional: the increase
in bone mass is linearly related to a reduction in the risk
of fracture (19,20). Likewise, a clear relationship has been
reported between an insufficient intake of calcium and a
greater risk of osteoporosis (21,22). However, it should be
pointed out that bone health is related not only to calcium
but also to vitamin D (23).
Inverse relationships have also been observed between
the consumption of calcium and the risk of suffering from
other diseases (3). The calcium that is not stored in the
bone tissue has metabolic functions in many physiological
processes: for example, the contraction of skeletal, cardiac
and smooth muscle, blood clotting and the transmission of
nerve signals, among others (18). It can also have beneficial effects on several non-skeletal systems of the human
metabolism (24): for example, it can act as a transduction
messenger (25).
Excitable cells such as neurons are very sensitive to
modifications in the concentration of calcium ions, so
any increase in this concentration above its normal value
(hypercalcemia) can cause excitation of the nervous
system.
10
ALIM. NUTRI. SALUD
Some studies suggest that when calcium comes from mineralized waters, just like the calcium that comes from food, it
is absorbed through the human intestine (26,27).
In a crossover experimental study, Couzy et al. (1995)
analyzed the bioavailability of calcium in drinking water
and compared it with the same amount of calcium from
milk (1,000 mg) in 9 healthy women between 21 and
36 years of age. The study was divided into two stages,
each of which lasted for five days. In each stage, for the
first three days the volunteers consumed milk containing a
specific amount of calcium (12.5 mmol/day) and for the last
two days they consumed either milk or water depending on
the study group they had been assigned to. The absorption
of calcium was determined in a fasting state using stable
isotope techniques. It was found that the calcium from water
was absorbed and retained in the same way as the calcium
from milk (28).
Heaney et al. (1994) also used a crossover study design
to study the bioavailability of calcium in calcium-rich natural
mineral water in 18 healthy women. This was then compared with the bioavailability of the same amount of calcium
in milk (2.5 mmol) using the isotope 45Ca. They observed
that the calcium present in the water was highly bioavailable
(an absorption fraction of 0.475), and as bioavailable as the
calcium from milk (29).
Another crossover trial analyzed the bioavailability of
calcium from six different types of food (fresh cheese,
­calcium-rich fresh cheese, fresh cheese enriched with iron,
enteral nutrition supplements, natural mineral water and
natural mineral water consumed with a meal of spaghetti).
This analysis was carried out in 12 health women between
20 and 29 years of age. Each stage of the intervention
lasted for two days and there was a wash out period of two
weeks between interventions. The absorption of calcium
was analyzed using stable isotopes (44Ca and 48Ca). The
absorption of calcium from drinking water was not significantly different from the absorption of calcium from dairy
products. However, the absorption of calcium from natural mineral water consumed with a meal of spaghetti was
significantly greater than the absorption of calcium from
the other food assessed (46.1% vs. 37%; P < 0.05) (30).
The authors believe that these results may be related to the
stimulation of the secretion of gastric acid, the formation
of soluble calcium complexes and a lower rate of gastric
emptying, which leads to a better solution. Likewise, it
should be pointed out that the consumption of calcium from
natural mineral waters did not interfere in the consumption
of calcium from other sources (largely dairy products).
Bacciottini et al. (2004) studied the bioavailability of the
calcium contained in calcium-rich natural mineral water in
27 participants (9 men, 9 pre-menopausal women and
9 post-menopausal women). Also, in eight of them the
bioavailability of calcium from water was compared with
the bioavailability of calcium from milk. The natural mineral
water and milk were marked with 30 mg of isotope 44Ca. To
ingest the same amount of calcium (100 mg), the subjects
consumed 490 mL of natural mineral water and 83 mL of
milk. It was observed that the calcium from the water was
Vol. 23, N.º 1, 2016
highly bioavailable in the three groups of individuals, and
that this bioavailability was equivalent to the calcium from
the milk. Therefore, the authors suggest that calcium-rich
natural mineral water be consumed in the context of a
balanced diet that includes calcium-rich food (non-dairy
products such as almonds, nuts, cabbage, etc.) so that the
requirements of this mineral can be fulfilled in individuals
who are intolerant to lactose or overweight (since the water
is a non-caloric source of calcium) (31). However, it should
be pointed out that to consume the same amount of calcium
contained in milk, a greater volume of natural mineral water
must be consumed (the exact amount obviously depends on
its composition).
A review carried out in 2006 confirmed the results discussed above that the capacity to absorb the calcium from
all the mineral waters assessed seems to be similar to the
absorption of calcium provided by milk when they are studied in the same conditions (32).
Finally, a meta-analysis carried out in the year 2000 concludes that, despite the lack of studies in small populations,
calcium from drinking water can be an interesting, effective
and supplementary alternative to calcium consumed in milk
or derivatives because of its comparable or even greater
bioavailability (25).
MAGNESIUM BIOAVAILABILITY
Magnesium is the fourth most abundant cation in the
human body and the second most abundant in the intracellular fluid. It is a cofactor in about 350 cellular enzymes,
most of which are related to energy metabolism (for example, glycolysis and ATP metabolism) but it also modulates signal transduction and cell proliferation. It also acts
as a cofactor in the transport of ions and nutrients, such as
sodium, potassium and calcium, through membranes. It is
also involved in protein and nucleic acid synthesis, and it
is essential if normal sensitivity to insulin and proper vascular tone are to be maintained since it has been observed
to be involved in neuromuscular excitability and muscle
contraction (4,33,34). Neuromuscular hyperexcitability
is the first problem perceived by individuals who present
magnesium deficiency (35). The total body reserves of this
mineral are about 25 g, and it is stored above all in bone
tissue (33). Magnesium is generally absorbed into the human body in the intestine (principally in the ileum and the
jejunum) in the form of ions (34). The intestinal bioavailability of magnesium depends on such factors as the type
of salt it is contained in, the type of dose, the amount of
active ingredient and the deposits of body magnesium (36).
After absorption, the magnesium is transported to the tissues where it is taken up only if required (37). Magnesium
frequently modulates ion transport by pumps, carriers and
channels. The second part of the transcellular transport of
magnesium is urinary excretion, which eliminates the excess
in plasma. Approximately 75% of total plasma magnesium
is filtered through the glomerular membrane. Anorexia,
WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH
nausea, vomiting, apathy and weakness are the primary
symptoms of magnesium deficiency. Severe deficiency can
cause paresthesia, muscle cramp, irritability, and attention
deficit and mental confusion (34).
In a crossover study carried out on 10 healthy men between 25 and 42 years of age, Verhas et al. (2002) analyzed
the bioavailability of magnesium from natural mineral waters. Each individual took 300 mL of natural mineral water
with 1.2 mmol of 28Mg or was given 1.2 mmol of 28Mg
intravenously in two different sessions (with a washout period of at least a week). They observed that the bioavailability
of magnesium from natural mineral water was 59% (38).
Another crossover study carried out in 10 healthy
women between 25 and 45 years of age used stable isotope techniques to study the bioavailability of magnesium
from water associated with the consumption of a meal.
The population was divided into two groups of similar
ages and BMIs. For 4 days, the two groups consumed
magne­sium-rich natural mineral water by itself on two alternate days or accompanied by a light meal (56 g of toast,
10 g of butter and 30 g of marmalade) on the other two
days. The authors showed that the absorption and retention
of magnesium from natural mineral water was greater when
it was consumed with a light meal. The results were the
same for both groups independently of the order in which
they started the study (16). It should be pointed out that this
study was short, the sample was small and there was no
wash out period between the stages.
Another crossover study analyzed the effect on the bioavailability of magnesium consumed in natural mineral water
in 12 healthy Caucasian males between 18 and 40 years
of age. Each subject was randomly assigned to one of the
two existing groups. All the participants consumed 1.5 liters
of natural mineral water containing a total of 84 mg. One of
the groups took seven servings of water on the first day
and two on the second, while the other group took two on
the first day and seven on the second. The results indicated that the absorption of magnesium from natural mineral
water was 32.4% when it was consumed in two servings
and 50.5% when it was consumed in seven. The authors
recommend consuming magnesium-rich water throughout
the day to cover the needs of this mineral given the greater
absorption of magnesium when water is consumed in seven
different serving (39).
For health professionals, and particularly dieticians and
nutritionists, including natural mineral water in the diet may
be a valid option to supplement the intake of calcium and
magnesium, and cover the daily dietary recommendations
for these nutrients.
POSSIBLE BENEFITS OF CONSUMING
MINERALS IN WATER
In its Geneva congress, the WHO announced that
the consumption of strongly mineralized water has no
11
C. FERREIRA-PÊGO, ET AL.
ALIM. NUTRI. SALUD
known effects on health (6). What is more, as has been
mentioned above, strongly mineralized water, and particularly if it is very strongly mineralized, can provide a
considerable calcium and magnesium intake for some
individuals alongside that provided by the consumption
of source foods (17).
magnesium and magnesium from the diet are inversely related to the total risk of cardiovascular events (57). In two
other recent meta-analyses, similar effects were observed
between the high consumption of magnesium and a reduced risk of suffering a cerebral vascular accident or heart
ischemic disease (43,58).
Some authors have suggested that the consumption of
water with medium-high concentrations of magnesium and
calcium and low concentrations of sodium (Table II) may
help to cover the daily recommendations of minerals, and
consequently improve some aspects of health (1).
The relationship between the intake of both magnesium
and calcium from strongly mineralized waters and the effects of these minerals on various aspects of health is controversial. Previous studies suggest an inverse relationship
between the intake of magnesium and calcium from drinking water and levels of arterial pressure (59-61). According
to a recent review by Sengupta, most large-scale studies
have observed an inverse relation between the consumption of strongly mineralized water and cardiovascular disease (6,62,63). However, other studies have not observed
this relation (64-65).
CARDIOVASCULAR DISEASE
Magnesium uses cardiomyocytes to regulate the flow of
cations through the calcium and potassium channels. It is
also required to maintain normal cardiac electrophysiology (40). Abnormally low levels of circulating magnesium
is a well-known risk factor for cardiac arrest (41).
It is currently thought that the effect of magnesium in
the prevention of cardiovascular diseases may be partly
mediated through inflammation. An increase in extracellular magnesium concentrations can reduce inflammatory
response, while a decrease can activate phagocytes and
endothelial cells. It is also thought that the inflammation
caused by magnesium deficiency may be the mechanism
that induces hypertriglyceridemia and pro-atherogenic
changes in the lipoprotein profile (42-44). The consumption
of magnesium has been inversely associated with markers of
systemic inflammation and endothelial dysfunction in the
general population (45) and post-menopausal women (46).
Likewise, endothelial cells make an active contribution to
inflammation in states of magnesium deficiency.
At the physiological level, magnesium is regarded as a
calcium blocker, so it reduces the release of calcium from
and to the sarcoplasmic reticulum, and protects the cells
against calcium overload during ischaemia (47-49). Magnesium reduces systemic and pulmonary vascular resistance,
with the resulting decrease in arterial pressure and a slight
increase in the cardiac index (50-52). Any increase in the
levels of extracellular magnesium reduces arterial tone, and
increases the endogenous dilation (adenosine, potassium
and some prostaglandins) and exogenous dilation (isoproterenol and nitroprusside) of some vasodilators (47,49,53,54).
As a result, magnesium slightly reduces systolic and diastolic
arterial pressure (55).
In a recent prospective study carried out in a population
at high cardiovascular risk by our group of research, an
inverse relationship was observed between the consumption of magnesium from the diet (without taking the consumption of natural mineral water into account) and the
incidence of cardiovascular disease, cancer and all-cause
disease (56). A recent meta-analysis has assessed the association between magnesium and the risk of suffering a
cardiovascular event, and demonstrated that both serum
12
Leoni et al. (1985) studied the relation between the
hardness of water and the pattern of mortality as a result
of cardiovascular diseases, ischemic disease and cerebrovascular diseases in the region of Abruzzio (Italy) in a town
of 594,323 inhabitants. They observed an inverse relation
between the prevalence of cardiovascular mortality and the
hardness of the water, but only in the population between
45 and 64 years of age (66).
Case-control studies carried out in Sweden on
1,746 women (67) and 1,843 men (68) between 50 and
69 years of age compared the consumption of calcium
and magnesium from water among those who had died
of myocardial infarction (cases) and those who had died of
cancer (controls). Both studies revealed an inverse relation between the consumption of magnesium from natural
mineral water and mortality by myocardial infarction. In
women, but not in men, this inverse relation was also
observed with the consumption of calcium from natural
mineral water (67).
In Finland and South Africa an inverse relation was also
observed between the concentrations of magnesium in
drinking water and the risk of death attributed to ischemic
heart disease (69).
Since then, several studies have reported an inverse relation between the hardness of water and cardiovascular
disease, particularly in relation to the content of magnesium
and calcium in drinking water. Nevertheless, it also points
out that more large-scale and longer-lasting epidemiological
studies are required to determine how the consumption of
natural mineral water and its components (mainly calcium
and magnesium) affects health.
CEREBROVASCULAR MORTALITY
The lack of magnesium leads to a decrease in the intracellular concentration of potassium and an increase in calcium levels. It can also increase the contractility of blood
vessels. Magnesium causes vasodilation by stimulating the
Vol. 23, N.º 1, 2016
release of endothelial prostacyclin and, in vivo, it prevents
the vasoconstriction of intracranial vessels after experimental subarachnoid haemorrhage (6).
Some epidemiological studies have shown that calcium
from the diet (not taking into account the calcium from
natural mineral water) is inversely associated with levels of
arterial tension. These results suggest that it is reasonable
to expect that the intake of calcium in the diet may reduce
the risk of cerebrovascular events (70). Nevertheless, so
far there have been no solid epidemiological studies, or
intervention studies, to confirm this.
CANCER
Some studies suggest an inverse relation between the
intake of calcium from the diet and the risk of colorectal
cancer (71). However, very few studies have examined the
relation between the consumption of certain minerals from
water and the risk of cancer.
Some case-control studies suggest an inverse association between the intake of calcium and magnesium from
drinking water and the risk of mortality as the result of colon cancer (72) or gastric cancer (73,74). In these studies,
the population was divided into tertiles according to the
content of calcium and magnesium in the water supply of
their area of residence. Gastric or colon cancer mortality
(cases) was compared with all-cause mortality (controls in
the area between 1987 and 1993). The authors revealed
a negative relation between higher contents of calcium in
the water supplied and the risk of mortality as a result of
gastric or colon cancer (72,73). In the case of magnesium,
an inverse relation was only observed in those individuals
whose water had higher contents of magnesium and gastric
cancer (73). More recent studies also support the inverse
relation between the intake of calcium and the lower risk
of gastric cancer (74).
WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH
In this regard, important prospective epidemiological studies (44,80,81) have assessed the intake of magnesium from
the diet and the risk of developing type 2 diabetes. In a
study of 85,060 women and 42,872 men, followed for
18 and 12 years, respectively, it was observed that those
subjects in the highest quintile of magnesium intake from
the diet had a protection against developing type 2 diabetes of 34% in women and 33% in men (80). More recent
studies also confirm this association in Japanese (81) and
American populations (44). It has been suggested that the
inverse association between magnesium consumption and
the incidence of diabetes is mediated by an improvement
in sensitivity to insulin and a reduction in inflammatory processes, as has been observed in intervention studies with
magnesium supplements (82). Hruby et al. (2014) showed
that a higher intake of magnesium was associated with a
37% lower risk of undergoing alterations in levels of plasma
glucose and a 32% lower risk of developing diabetes in
those who already presented altered basal glucose at the
beginning of the study (44).
A 20-year prospective study on 83,779 women analyzed the relationship between the consumption of calcium
and the risk of type 2 diabetes. The authors observed that
women with a total daily calcium intake (diet + supplements) that was equal to or above 1,200 mg presented
a 21% lower risk of developing diabetes than those who
consumed less than 600 mg/day (83). Similar results with
respect to protection against type 2 diabetes were observed
in other prospective studies (84,85), reviews (86) and meta-analyses (87) which assessed the consumption of calcium
from the daily intake of dairy products. One important meta-analysis reported a relationship between intake or calcium serum levels and the prevalence or incidence of type 2
diabetes. However, the authors conclude that the available
scientific evidence is limited since most of the studies are
cross-sectional and in many cases were not adjusted for
important confounding factors (88).
Recently, another case-control study examined the intake of calcium and magnesium from drinking water and
lung-cancer mortality in women. No significant relationship
was observed (75).
Although the relationship between magnesium consumption and diabetes seems to be quite clear, a sufficient number of studies have not proved that there is a relationship
between magnesium from natural mineral waters and the
prevalence or incidence of type 2 diabetes. Likewise, to
date no studies have related the consumption of calcium
from natural mineral waters with glucose metabolism.
Therefore, to date, the scientific evidence available is not
sufficient to demonstrate a relationship between the intake
of calcium and magnesium from natural mineral water and
the risk of suffering from several types of cancer.
NEPHROLITHIASIS
DIABETES MELLITUS
Magnesium plays an important role in the physiopathology of diabetes mellitus. Magnesium deficiency in cells can
decrease the insulin secretion through interaction with cell
calcium homeostasis (76). Hypomagnesemia is common to
individuals diagnosed with type 2 diabetes mellitus (77–79).
At present, there is general consensus consuming large
amounts of liquid can help prevent urinary lithiasis because
it decreases the concentrations of elements that can crystalise (89). However, there is some controversy about the
possible impact of the different qualities of natural mineral water, including the hardness, on the risk of renal
­calculi (90).
A cross-sectional study carried out in 4,833 patients with
a history of nephrolithiasis examined the hardness of the
13
C. FERREIRA-PÊGO, ET AL.
water habitually consumed in the geographical area they
lived in and the number of episodes of renal calculi that
they presented. No significant differences were observed.
However, the concentrations of calcium, magnesium and
citrate present in urine over 24 hours correlated directly
with the content of these minerals in drinking water (91).
A study carried out in 29 men with a history of renal
calculi (n = 14) and patients without the pathology (n = 15)
examined the effect of consuming three different types of
water (minimal hardness, moderate hardness [tap water]
and maximum hardness) on urinary parameters. The authors observed that in the group that had experienced
nephrolithiasis, the calcium-creatine ratio increased with
the hardness of the water consumed, which lead to a greater risk of renal calculi. These results were not observed in
the group with no history of the pathology. The patients
with a history of nephrolithiasis also presented a ratio of
magnesium/creatine excretion that was significantly lower
than that of the patients without the pathology. The authors regard that this parameter may be one of the reasons
why patients with a history of nephrolithiasis tend to form
renal calculi (90).
A random, double-blind, crossover study carried out
on 18 patients with idiopathic nephrolithiasis analyzed
whether the hardness of the water consumed modified
the risk of renal calculi if it was consumed apart from the
main meals. The consumption of strongly mineralized
water was associated with a 50% increase in the urinary
concentration of calcium with no changes in the excretion of oxalates, and tripled the calcium citrate index in
comparison with the consumption of weakly mineralized
water. The authors suggest that the recurrence of renal
calculi can be reduced if weakly mineralized water is consumed apart from main meals because it is associated with
the lowest risk (92).
Siener et al. (2004) carried out an intervention study on
12 healthy men. They analyzed the effect of calcium-rich
natural mineral water (232 mg/L), magnesium (337 mg/L)
and bicarbonate (3,388 mg/L) on the composition of urine.
The authors observed that the content of magnesium and
bicarbonate in natural mineral water led to favorable changes in urinary pH, the excretion of magnesium and citrate,
and inhibitors of the formation of calcium oxalate calculi.
Nevertheless, the urinary excretion of oxalate did not diminish. Therefore, further studies are required if we are to be
able to affirm that the intake of calcium-rich natural mineral
water can limit intestinal absorption and the urinary excretion of calcium and oxalate (93).
To date no association has been demonstrated between
the hardness of water, its composition and calcium content,
and the formation of urinary calculi. Some studies suggest
that the consumption of weakly or very weakly mineralized water may be more beneficial for the prevention of
renal lithiasis than the consumption of strongly mineralized
water, since it is associated with a lower risk of recurrence
of calcium calculi (92,94). However, to reduce the risk of
the recurring formation of calcium calculi, the European
Association of Urology recommends an adequate con-
14
ALIM. NUTRI. SALUD
sumption of calcium and only recommends restriction for
important individual health reasons and always following
specialist medical advice (89). The formation of renal calculi
is a complex process that has not been fully clarified, and
factors such as diet, physical activity, environmental conditions, medicines, supplements and underlying diseases can
be important factors (90).
MINERAL BONE DENSITY
As has been pointed out previously, although dairy products are the main source of calcium from the diet, the calcium from natural mineral water can make a valuable extra
contribution of calcium (95).
A cross-sectional study was made of the relationship
between the consumption of calcium from natural mineral
water and the femoral bone density in 4,434 women of
more than 75 years of age from the EPIDOS cohort. It was
observed that an increase of 100 mg/day of calcium from
natural mineral water was associated with an increase of
0.5% in femoral bone density, while a similar increase in
the consumption of calcium from other sources of the diet
was only associated with a greater bone density of 0.2%,
although the difference was not significant. The authors
suggested that the consumption of calcium-rich water may
make an extra contribution, particularly in adult and elderly
women who consume little calcium from food such as dairy
products (95). Likewise, in a study carried out in Norway on
5,472 men and 13,604 women between 50 and 85 years
of age followed for between 3 and 14 years an inverse relationship was observed between the consumption of calcium
and magnesium from water and the risk of hip fracture. The
authors concluded that the magnesium present in drinking
water may protect against hip fractures. Further research
is required to provide more scientific evidence and clarify
this possible relationship (96).
In a cohort study of 255 women, Costi et al. (1999)
analyzed the importance of calcium from water for maintaining the bone mass. They divided the participants into
two groups: those who regularly drank strongly mineralized water (group A) and those who consumed different
types of water with a lower content of calcium (group B).
The mean values of bone density were slightly (but significantly) higher in the participants from group A, even after
adjusting for confounding variables such as age, BMI and
menopause (97).
Nevertheless, the influence of calcium and magnesium
on bone health may be affected not only by their concentration in natural mineral water, but also by the concentrations
of other minerals. For example, in a crossover study carried
out on 39 post-menopausal women (mean age 64 years
old), it was observed that, with the same concentration of
calcium, a bicarbonate-rich water had a more positive effect
on the metabolism than a sulfate-rich water. In the group
that consumed water rich in calcium and bicarbonate, the
Vol. 23, N.º 1, 2016
WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH
ionized calcium in the urine and its pH increased, while the
parathyroid hormone (PTH) and bone resorption markers
decreased (98).
In a double-blind, randomized trial controlled with placebo for six months, Meunier et al. (2005) observed similar results. Their objective was to assess the effects of the
daily consumption of calcium-rich natural mineral water
on the levels of PTH in serum and several biochemical
markers of bone remodeling. It was carried out on 176
post-menopausal women (mean age 70 years old) who presented a low calcium intake (< 700 mg/day). The placebo
group consumed 1 liter of natural mineral water with low
calcium content (10 mg/L), and the test group consumed
1 liter of natural mineral water with high calcium content
(596 mg/L). The authors observed that after an intervention of six months with calcium-rich water, the PTH levels
decreased by 14.1%. These decreases were in the order
of 8.6% for osteocalcine, 11.5% for bone alkaline phosphatase, and 16.3% and 13% for type 1 collagen in serum
and urine, respectively. The authors concluded that a daily
calcium supplement of 596 mg through the consumption
of 1 liter of calcium-rich natural mineral water can help to
reduce age-related bone loss (99).
be carried out on larger populations and for longer periods
before any recommendations can be made to the general
population (95,96,99).
RISK OF VERY-LOW MINERALIZED WATER
CONSUMPTION
A WHO report has evaluated some years ago the possible harmful effects of drinking this type of water, however
the lack of research on this issue was evident, conducting a
series of recommendations for minimum, maximum and/or
optimal mineral content of water (Table VII). The potential
adverse effects of demineralized water have not sufficiently
been studied to date since this type of water is not normally
found freely in nature, except in the form of rain water and
naturally formed ice. Unfortunately, during the last two decades, little research has been carried out into the beneficial
or harmful effects of some minerals from drinking water.
CONCLUSION
IN SUMMARY
In accordance with the existing literature on the consumption of calcium or magnesium, or both, from drinking
water, it is suggested that there is an inverse relationship
with the risk of colorectal cancer, gastric cancer, cerebrovascular and cardiovascular diseases, cardiovascular-cause
mortality, diabetes mellitus, nephrolithiasis and even bone
diseases. However, the relation between the consumption
of drinking water rich in minerals and their effect on various
aspects of human health have not been sufficiently elucidated, so it is clear that more epidemiological studies need to
Different types of water make widely varying dietary contributions of calcium, magnesium and sodium. For example,
in Spain depending on the type of mineralization of still
bottled waters, they can provide between 0.5 and 88.8% of
calcium recommendations, between 0.9 and 65.3% of magnesium and between 0.4 and 232.1% of sodium. Also depending on mineralization, carbonated waters can provide
between 6.9 and 24.8% of the recommended intake of calcium, between 12.2 and 43.2% of magnesium and between
6.6 and 109.4% of sodium. However, in this review most of
the waters analyzed are weakly mineralized natural mineral
waters that can provide between 6 and 7.7% of calcium,
TABLE VII
WHO RECOMMENDATIONS ON MINIMUM, MAXIMUM AND/OR OPTIMUM MINERAL CONTENT OF VERY WEAKLY
MINERALIZED WATERS (TDS < 50 mg/L)
Minimum levels
Optimum levels
Maximum levels
100 mg/L
250-500 mg/L
ND
ND
ND
6.5 mEq/L
Bicarbonate
30 mg/L
ND
ND
Calcium
30 mg/L
ND
ND
Magnesium
10 mg/L
20-30 mg/L
ND
Sodium
ND
ND
200 mg/L
Boron
ND
ND
0.5 mg/L
Bromine
ND
ND
0.01 mg/L
Total dissolved salts
Alkalinity
ND: No data.
15
C. FERREIRA-PÊGO, ET AL.
between 6.5 and 7.4% of magnesium and between 1.8 and
2.5% of sodium. These results indicate that drinking water
can be a source of extra minerals not only in developing
countries but also in such developed countries as Spain, the
population of which presents an inadequate consumption
of calcium and magnesium. Moreover, despite the limited
amount of scientific evidence available to date, the calcium
and magnesium from drinking water may be an interesting,
effective and complementary alternative to consuming these
minerals through food because their bioavailability is similar
or even greater. Although food are the principal source
of this minerals, for health professionals, particularly dietitians-nutritionists, the inclusion of natural mineral waters
in the diet may be a valid option to complement the intake
of calcium and magnesium, and therefore cover the daily
dietary recommendations of these nutrients. The existent
scientific literature suggests that the consumption of calcium
and/or magnesium from drinking waters are inversely related to the risk of some chronic diseases. If these relations are
to be firmly established, however, further epidemiological
studies on large population samples are required●
CORRESPONDENCE:
Jordi Salas-Salvadó
Human Nutrition Unit. Faculty of Medicine and Healthy
Sciences
Universitat Rovira i Virgili
Sant Llorenç, 21,
43201 Reus, Tarragona
e-mail address: [email protected]
REFERENCES
1. Garzon P, Eisenberg M. Variation in the mineral content
of commercially available bottled waters: implications for
health and disease. The American journal of medicine
1998;105(2):125-30.
2. Azoulay A, Garzon P. Eisenberg MJ. Comparison of the mineral content of tap water and bottled waters. Journal of general
internal medicine 2001;16:168-75.
3. World Health Organization. Calcium and Magnesium in Drinking-Water - Public health significance. World Health Organization 2009;67:612-3.
4. World Health Organization. Nutrients in Drinking Water.
World Health Organization; 2005.
5. BOE-A-2011-971. Real Decreto 1798/2010, de 30 de
diciembre, por el que se regula la explotación y comercialización de aguas minerales naturales y aguas de manantial
envasadas para consumo humano; 2011. p. 1–22.
6. Sengupta P. Potential Health Impacts of Hard Water. International journal of preventive medicine 2013;4:866-75.
7. European Union. Commission Regulation (EU) No. 115/2010
of 9 February 2010.
8. BOE-A-2003-3596. Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad
del agua de consumo humano.
9. BOE 259 de 29-12-2002. Real Decreto 1074/2002.
10. EFSA. How much water does my body need ? The scientific answer from the European Food Safety Authority. EFBW
Scientific Folio n.°1. 2010;1:5-6.
16
ALIM. NUTRI. SALUD
11. Agostoni C, Bresson J, Fairweather-Tait S. Scientific opinion on dietary reference values for water. EFSA Journal
2010;8:1-48.
12. Welch BE, Buskirk ER, Iampietro PF. Relation of climate and
temperature to food and water intake in man. Metabolism:
clinical and experimental 1958;7:141-8.
13. Ross C, Taylor C, Yaktine A, Del Valle H. Dietary Reference
Intakes Estimated. En: Dietary Reference Intakes for Calcium
and Vitamin D Washington D.C.: The National Academies
Press; 2011. p. 1103-15.
14. Federación Española de Sociedades de Nutrición Alimentación y Dietética. Ingestas Dietéticas de Referencia (IDR) para
la población española. Navarra: Ediciones Universidad de
Navarra. S.A. (EUNSA); 2010. p. 341.
15. Agencia Española de Seguridad Alimentaria y Nutrición. Evaluación Nutricional De La Dieta Española II - Micronutrientes. Sobre datos de la Encuesta Nacional de Ingesta Dietética
(­ENIDE). AESAN, 2011.
16. Sabatier M, Arnaud MJ, Kastenmayer P, Rytz A, Barclay D V.
Meal effect on magnesium bioavailability from mineral water
in healthy women. The American journal of clinical nutrition
2002;75:65-71.
17. Galan P, Arnaud MJ, Czernichow S, Delabroise AM,
Preziosi P, Bertrais S, et al. Contribution of mineral waters
to dietary calcium and magnesium intake in a French adult
population. Journal of the American Dietetic Association
2002;102:1658-62.
18. Guyton AC, Hall JE. Parathyroid Hormone. Calcitonin. Calcium and Phosphate Metabolism. Vitamin D. Bone and Teeth.
En: Textbook of Medical Physiology. 11ª ed. 2007. p. 978-95.
19. Van den Berg P, van Haard PMM, van den Bergh JPW,
Niesten DD, van der Elst M, Schweitzer DH. First quantification of calcium intake from calcium-dense dairy products
in Dutch fracture patients (the Delft cohort study). Nutrients
2014;6:2404-18.
20. Włodarek D, Głąbska D, Kołota A, Adamczyk P, Czekajło A,
Grzeszczak W, et al. Calcium intake and osteoporosis: the influence of calcium intake from dairy products on hip bone mineral density and fracture incidence - a population-based study in women
over 55 years of age. Public health nutrition 2014;17:383-9.
21. Fan T, Nocea G, Modi A, Stokes L, Sen SS. Calcium and vitamin D intake by postmenopausal women with osteoporosis in
Spain: an observational calcium and vitamin D intake (CaVIT)
study. Clinical interventions in aging 2013;8:689-96.
22. Kim KM, Choi SH, Lim S, Moon JH, Kim JH, Kim SW,
et al. Interactions Between Dietary Calcium Intake and Bone
Mineral Density or Bone Geometry in a Low Calcium Intake
Population (KNHANES IV 2008-2010). The Journal of clinical endocrinology and metabolism 2014;99:2409-17.
23. Lips P, Gielen E, van Schoor NM, Vitamin D supplements
with or without calcium to prevent fractures. BoneKEy reports
2014;3:512.
24. McCarron DA, Heaney RP. Estimated healthcare savings associated with adequate dairy food intake. American journal of
hypertension 2004;17:88-97.
25. Bohmer H, Müller H, Resch KL. Calcium supplementation
with calcium-rich mineral waters: a systematic review and
meta-analysis of its bioavailability. Osteoporosis international: a journal established as result of cooperation between
the European Foundation for Osteoporosis and the National
Osteoporosis Foundation of the USA 2000;11:938-43.
26. Bushinsky DA, Monk RD. Electrolyte quintet: Calcium. Lancet
1998;352:306-11.
27. Rasmussen H. The calcium messenger system (1). The New
England journal of medicine 1986;314:1094-101.
28. Couzy F, Kastenmayer P, Vigo M, Clough J, Munoz-Box R, Barclay D V. Calcium bioavailability from a calcium- and sulfate-rich
Vol. 23, N.º 1, 2016
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
mineral water, compared with milk, in young adult women.
The American journal of clinical nutrition 1995;62:1239-44.
Heaney RP, Dowell MS. Absorbability of the calcium in a
high-calcium mineral water. Osteoporosis international: a journal established as result of cooperation between the European
Foundation for Osteoporosis and the National Osteoporosis
Foundation of the USA 1994;4:323,4.
Van Dokkum W, De La Guéronnière V, Schaafsma G, Bouley C, Luten J, Latgé C. Bioavailability of calcium of fresh
cheeses. enteral food and mineral water. A study with stable
calcium isotopes in young adult women. The British journal
of nutrition 1996;75:893-903.
Bacciottini L, Tanini A, Falchetti A, Masi L, Franceschelli F,
Pampaloni B, et al. Calcium bioavailability from a calcium-rich
mineral water. with some observations on method. Journal of
clinical gastroenterology 2004;38:761-6.
Heaney RP. Absorbability and utility of calcium in mineral waters. The American journal of clinical nutrition
2006;84:371-4.
World Health Organization. Hardness in Drinking-water: Background document for development of WHO Guidelines for
Drinking-water Quality. World Health Organization; 2011.
Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A, Magnesium. An update on physiological. clinical and
analytical aspects. Clinica chimica acta; international journal
of clinical chemistry 2000;294:1-26.
Durlach J, Bac P, Durlach V, Bara M, Guiet-Bara A. Neurotic.
neuromuscular and autonomic nervous form of magnesium
imbalance. Magnesium research: official organ of the International Society for the Development of Research on Magnesium 1997;10:169-95.
Benech H, Grognet JM. Recent data on the evaluation of
magnesium bioavailability in humans. Magnesium research:
official organ of the International Society for the Development
of Research on Magnesium 1995;8:277-84.
Vormann J. Magnesium: nutrition and metabolism. Molecular
aspects of medicine;24:27-37.
Verhas M, de la Guéronnière V, Grognet J-M, Paternot J,
Hermanne A, Van den Winkel P, et al. Magnesium bioavailability from mineral water. A study in adult men. European
journal of clinical nutrition 2002;56:442-7.
Sabatier M, Grandvuillemin A, Kastenmayer P, Aeschliman JM, Bouisset F, Arnaud MJ, et al. Influence of the consumption pattern of magnesium from magnesium-rich mineral
water on magnesium bioavailability. The British journal of
nutrition 2011;106:331-4.
Mubagwa K, Gwanyanya A, Zakharov S, Macianskiene R.
Regulation of cation channels in cardiac and smooth muscle
cells by intracellular magnesium. Archives of biochemistry and
biophysics 2007;458:73-89.
Neumar RW, Otto CW, Link MS, Kronick SL, Shuster M,
Callaway CW, et al. Part 8: adult advanced cardiovascular life
support: 2010 American Heart Association Guidelines for
Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010;122:S729-67.
Shechter M. Magnesium and cardiovascular system. Magnesium research 2010;23:60-72.
Del Gobbo LC, Imamura F, Wu JHY, de Oliveira Otto MC,
Chiuve SE, Mozaffarian D. Circulating and dietary magnesium
and risk of cardiovascular disease: a systematic review and
meta-analysis of prospective studies. The American journal
of clinical nutrition 2013;98:160-73.
Hruby A, O’Donnell CJ, Jacques PF, Meigs JB, Hoffmann U,
McKeown NM. Magnesium Intake Is Inversely Associated With
Coronary Artery Calcification: The Framingham Heart Study.
JACC. Cardiovascular imaging 2014.
Song Y, Li TY, van Dam RM, Manson JE, Hu FB. Magnesium intake and plasma concentrations of markers of sys-
WATER MINERALIZATION AND ITS IMPORTANCE FOR HEALTH
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
temic inflammation and endothelial dysfunction in women.
The American journal of clinical nutrition 2007;85:1068-74.
Chacko SA, Song Y, Nathan L, Tinker L, de Boer IH, Tylavsky F, et al. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an
ethnically diverse cohort of postmenopausal women. Diabetes
care 2010;33:304-10.
Mroczek WJ, Lee WR, Davidov ME. Effect of magnesium sulfate on cardiovascular hemodynamics. Angiology
1977;28:720-4.
Rasmussen HS, Larsen OG, Meier K, Larsen J. Hemodynamic effects of intravenously administered magnesium on
patients with ischemic heart disease. Clinical cardiology
1988;11:824-8.
Altura BM, Altura BT. New perspectives on the role of magnesium in the pathophysiology of the cardiovascular system.
II. Experimental aspects. Magnesium 1985;4:245-71.
Iseri LT, French JH. Magnesium: nature’s physiologic calcium
blocker. American heart journal 1984;108:188-93.
Holroyde MJ, Robertson SP, Johnson JD, Solaro RJ, Potter JD. The calcium and magnesium binding sites on cardiac
troponin and their role in the regulation of myofibrillar adenosine triphosphatase. The Journal of biological chemistry
1980;255:11688-93.
Sordahl LA. Effects of magnesium. Ruthenium red and the
antibiotic ionophore A-23187 on initial rates of calcium
uptake and release by heart mitochondria. Archives of biochemistry and biophysics 1975;167:104-15.
Cotton DB, Gonik B, Dorman KF. Cardiovascular alterations
in severe pregnancy-induced hypertension: acute effects of
intravenous magnesium sulfate. American journal of obstetrics
and gynecology 1984;148:162-5.
Altura BM. Magnesium-neurohypophyseal hormone interactions in contraction of vascular smooth muscle. The American
journal of physiology 1975;228:1615-20.
Jee SH, Miller ER, Guallar E, Singh VK, Appel LJ, Klag MJ.
The effect of magnesium supplementation on blood pressure:
a meta-analysis of randomized clinical trials. American journal
of hypertension 2002;15:691-6.
Guasch-Ferré M, Bulló M, Estruch R, Corella D, Martí­nezGonzález MA, Ros E, et al. Dietary Magnesium Intake Is Inversely Associated with Mortality in Adults at High Cardiovascular
Risk. The Journal of nutrition 2013;144:55-60.
Qu X, Jin F, Hao Y, Li H, Tang T, Wang H, et al. Magnesium
and the risk of cardiovascular events: a meta-analysis of prospective cohort studies. PloS one 2013;8:e57720.
Larsson SC, Orsini N, Wolk A. Dietary magnesium intake
and risk of stroke: a meta-analysis of prospective studies. The
American journal of clinical nutrition 2012;95:362-6.
Sauvant MP, Pepin D. Drinking water and cardiovascular
disease. Food and chemical toxicology : an international journal published for the British Industrial Biological Research
Association 2002;40:1311-25.
Kesteloot H, Joossens J V. Relationship of dietary sodium.
potassium. calcium. and magnesium with blood pressure.
Belgian Interuniversity Research on Nutrition and Health.
Hypertension 1988;12:594-9.
Joffres MR, Reed DM, Yano K. Relationship of magnesium
intake and other dietary factors to blood pressure: the Honolulu heart study. The American journal of clinical nutrition
1987;45:469-75.
Anderson TW, Neri LC, Schreiber GB, Talbot FD, Zdrojewski A. Letter: Ischemic heart disease. water hardness and
myocardial magnesium. Canadian Medical Association journal
1975;113:199-203.
Masironi R, Pisa Z, Clayton D. Myocardial infarction and water
hardness in the WHO myocardial infarction registry network.
Bulletin of the World Health Organization 1979;57:291-9.
17
C. FERREIRA-PÊGO, ET AL.
64. Mackinnon AU, Taylor SH. Relationship between “sudden”
coronary deaths and drinking water hardness in five Yorkshire cities and towns. International journal of epidemiology
1980;9:247-9.
65. Sonneborn M, Mandelkow J. German studies on health
effects of inorganic drinking water constituents. The Science
of the total environment 1981;18:47-60.
66. Leoni V, Fabiani L, Ticchiarelli L. Water hardness and cardiovascular mortality rate in Abruzzo. Italy. Archives of environmental health 1985;40:274-8.
67. Rubenowitz E, Axelsson G, Rylander R. Magnesium and
calcium in drinking water and death from acute myocardial infarction in women. Epidemiology (Cambridge. Mass.)
1999;10:31-6.
68. Rubenowitz E, Axelsson G, Rylander R. Magnesium in drinking water and death from acute myocardial infarction. American journal of epidemiology 1996;143:456-62.
69. Luoma H, Aromaa A, Helminen S, Murtomaa H, Kiviluoto L,
Punsar S, et al. Risk of myocardial infarction in Finnish men in
relation to fluoride. magnesium and calcium concentration in
drinking water. Acta medica Scandinavica 1983;213:171-6.
70. Allender PS, Cutler JA, Follmann D, Cappuccio FP, Pryer J,
Elliott P. Dietary calcium and blood pressure: a meta-analysis of randomized clinical trials. Annals of internal medicine
1996;124:825-31.
71. Larsson SC, Bergkvist L, Rutegård J, Giovannucci E, Wolk A.
Calcium and dairy food intakes are inversely associated with
colorectal cancer risk in the Cohort of Swedish Men. The
American journal of clinical nutrition 2006;83:667-73; quiz
728-9.
72. Yang CY, Chiu HF, Chiu JF, Tsai SS, Cheng MF. Calcium
and magnesium in drinking water and risk of death from
colon cancer. Japanese journal of cancer research : Gann
1997;88:928-33.
73. Yang CY, Cheng MF, Tsai SS, Hsieh YL. Calcium. magnesium. and nitrate in drinking water and gastric cancer mortality.
Japanese journal of cancer research : Gann 1998;89:124-30.
74. Liao YH, Chen PS, Chiu HF, Yang CY. Magnesium in drinking water modifies the association between nitrate ingestion
and risk of death from esophageal cancer. Journal of toxicology and environmental health. Part A 2013;76:192-200.
75. Cheng MH, Chiu HF, Tsai SS, Chen CC, Yang CY. Calcium
and magnesium in drinking-water and risk of death from lung
cancer in women. Magnesium research: official organ of the
International Society for the Development of Research on
Magnesium 2012;25:112-9.
76. Barbagallo M, Dominguez LJ, Galioto A, Ferlisi A, Cani C,
Malfa L, et al. Role of magnesium in insulin action. diabetes
and cardio-metabolic syndrome X. Molecular aspects of medicine 2003;24:39-52.
77. Barbagallo M, Di Bella G, Brucato V, D’Angelo D, Damiani
P, Monteverde A, et al. Serum ionized magnesium in diabetic
older persons. Metabolism: clinical and experimental 2013.
78. Galli-Tsinopoulou A, Maggana I, Kyrgios I, Mouzaki K. Grammatikopoulou MG, Stylianou C, et al. Association between
magnesium concentration and HbA1c in children and adolescents with type 1 diabetes mellitus. Journal of diabetes
2014;6(4):369-77.
79. Pasula S, Sameera K. Trace elements in diabetes mellitus. Journal of clinical and diagnostic researc: JCDR 2013;7:1863-5.
80. López-Ridaura R, Willett W, Rimm E, Liu S, Stampfer M,
Manson J, et al. Magnesium intake and risk of type 2 diabetes
in men and women. Diabetes care 2004;27:134-40.
81. Hata A, Doi Y, Ninomiya T, Mukai N, Hirakawa Y, Hata J, et
al. Magnesium intake decreases Type 2 diabetes risk through
the improvement of insulin resistance and inflammation: the
Hisayama Study. Diabetic medicine : a journal of the British
Diabetic Association 2013;30:1487-94.
18
ALIM. NUTRI. SALUD
82. Mooren F, Kruger K, Volker K, Golf S, Wadepuhl M, Kraus A.
Oral magnesium supplementation reduces insulin resistance
in non-diabetic subjects - a double-blind. placebo-controlled.
randomized trial. Diabetes Obes Metab2 2011;13:281-4.
83. Pittas A, Dawson-Hughes B, Li T, Van Dam R, Willet W,
Manson J, et al. Vitamin D and calcium intake in relation to
type 2 Diabetes in women. Diabetes care 2006;29:650-6.
84. Liu S, Choi HK, Ford E, Song Y, Klevak A, Buring JE, et al.
A prospective study of dairy intake and the risk of type 2
diabetes in women. Diabetes care 2006;29:1579-84.
85. Choi HK, Willett WC, Stampfer MJ, Rimm E, Hu FB.
Dairy consumption and risk of type 2 diabetes mellitus in
men: a prospective study. Archives of internal medicine
2005;165:997-1003.
86. Kalergis M, Leung Yinko SSL, Nedelcu R. Dairy products and
prevention of type 2 diabetes: implications for research and
practice. Frontiers in endocrinology 2013;4:90.
87. Tong X, Dong JY, Wu ZW, Li W, Qin LQ. Dairy consumption
and risk of type 2 diabetes mellitus: a meta-analysis of cohort studies. European journal of clinical nutrition 2011;65:1027-31.
88. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of
vitamin D and calcium in type 2 diabetes. A systematic review
and meta-analysis. The Journal of clinical endocrinology and
metabolism 2007;92:2017-29.
89. Tiselius HG, Ackermann D, Alken P, Buck C, Conort P,
Gallucci M. Guidelines on Urolithiasis European urology;
2008. p.1-128.
90. Mirzazadeh M, Nouran MG, Richards KA, Zare M. Effects of
drinking water quality on urinary parameters in men with and
without urinary tract stones. Urology 2012;79:501-7.
91. Schwartz BF, Schenkman NS, Bruce JE, Leslie SW, Stoller ML. Calcium nephrolithiasis: effect of water hardness on
urinary electrolytes. Urology 2002;60:23-7.
92. Bellizzi V, De Nicola L, Minutolo R, Russo D, Cianciaruso B,
Andreucci M, et al. Effects of water hardness on urinary risk
factors for kidney stones in patients with idiopathic nephrolithiasis. Nephron 1999;81 Suppl 1:66-70.
93. Siener R, Jahnen A, Hesse A. Influence of a mineral water
rich in calcium. magnesium and bicarbonate on urine composition and the risk of calcium oxalate crystallization. European
journal of clinical nutrition 2004;58:270-6.
94. Institute of Medicine. Dietary Reference Intakes for water.
potassium. sodium. chloride and sulfate Washington D.C.:
The National Academies Press; 2005. p. 638.
95. Aptel I, Cance-Rouzaud A, Grandjean H. Association between
calcium ingested from drinking water and femoral bone density
in elderly women: evidence from the EPIDOS cohort. Journal
of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 1999;14:829-33.
96. Dahl C, Søgaard AJ, Tell GS, Flaten TP, Hongve D,
Omsland TK, et al. Nationwide data on municipal drinking
water and hip fracture: could calcium and magnesium be protective? A NOREPOS study. Bone 2013;57:84-91.
97. Costi D, Calcaterra PG, Iori N, Vourna S, Nappi G, Passeri M. Importance of bioavailable calcium drinking water for
the maintenance of bone mass in post-menopausal women.
Journal of endocrinological investigation 1999;22:852-6.
98. Roux S, Baudoin C, Boute D, Brazier M, De La Guéronniere V,
De Vernejoul MC. Biological effects of drinking-water mineral
composition on calcium balance and bone remodeling markers.
The journal of nutrition. health & aging 2004;8:380-4.
99. Meunier PJ, Jenvrin C, Munoz F, de la Gueronnière V, Garnero P, Menz M. Consumption of a high calcium mineral water
lowers biochemical indices of bone remodeling in postmenopausal women with low calcium intake. Osteoporosis international: a journal established as result of cooperation between
the European Foundation for Osteoporosis and the National
Osteoporosis Foundation of the USA 2005;16:1203-9.
1136-4815/23/19-25
Alimentacion, Nutricion y Salud
Copyright © 2016 Instituto Danone
Alim. Nutri. Salud
Vol. 23, N.º 1, pp. 19-25, 2016
La publicidad alimentaria dirigida a menores en España
M. J. Bosqued Estefanía, L. López Jurado, Á. Moya Geromini, M. Á. Royo Bordonada
ESCUELA NACIONAL DE SANIDAD. INSTITUTO DE SALUD CARLOS III. MADRID
RESUMEN
L
ABSTRACT
F
a publicidad alimentaria de productos altamente energéticos y pobres en nutrientes influye en las preferencias,
las peticiones de compra y los hábitos alimentarios de los
menores, contribuyendo a la epidemia de obesidad y la
aparición precoz de factores de riesgo de enfermedades
crónicas. La OMS recomienda reducir el impacto negativo
de la publicidad de alimentos y bebidas ricos en grasas,
azúcares y sal en los hábitos alimentarios de los menores,
actuando sobre el poder de las técnicas de marketing y
los niveles de exposición. En España, pese a la existencia
del código PAOS, regulador de la publicidad alimentaria
dirigida a menores, en torno a dos tercios de los anuncios en horario infantil y más de la mitad de los que usan
marketing nutricional son de productos altos en grasas,
azúcares y/o sal. En la lucha contra la obesidad infantil y
sus consecuencias conviene regular el contenido nutricional
de la publicidad alimentaria dirigida a menores (al menos
hasta 16 años) en todos los programas y horarios con una
audiencia infantil significativa.
ood advertising of energy-dense, nutrient-poor foods
and beverages influences children´s food preferences, purchasing decisions and consumption patterns, helping to
fuel the epidemic of obesity and the early development of
diet-related non communicable diseases. The World Health
Organization recommends lessening the negative impact
on children´s food patterns of marketing of foods and
beverages high in saturated fats, trans-fatty acids, sugars
or salt by reducing both the exposure of children to, and
power of, this kind of marketing. In Spain, despite the existence of the PAOS code, that regulates food advertising to
children, around two thirds of the food advertisements aired
in children´s viewing time and more than half of those using
nutrition marketing refer to products high in fat, sugar or
salt (less healthy foods). In the fight against childhood obesity and its consequences, it would be helpful to regulate
the nutritional content of food advertising directed at children (at least under 16) during programs with a significant
child-audience share.
Palabras clave: Obesidad infantil. Publicidad alimentaria.
Perfil nutricional. Marketing nutricional. Alegación de salud.
Key words: Childhood obesity. Food advertising. Nutrient
profile. Nutrition marketing. Health claim.
INTRODUCCIÓN
La infancia es una etapa clave en relación con la publicidad alimentaria por tres motivos principales. En primer
lugar, hasta los 12 años la mayoría de niños todavía no
son conscientes de la intención persuasiva de la publicidad y tienen dificultades para identificar los anuncios por
Internet (1,2). En segundo lugar, la promoción intensa y
generalizada de alimentos y bebidas altos en grasas saturadas, ácidos grasos trans, azúcares o sal (AGATAS) con
técnicas de marketing cada vez más sofisticadas influye en
las preferencias alimentarias, las solicitudes de compra y los
hábitos de consumo de los niños (3). Y en tercer lugar se
trata de una etapa determinante en la adquisición de hábitos
alimentarios que, una vez instaurados, son muy resistentes
al cambio (4).
Las evidencias sobre la relación entre la presión publicitaria
del sector de la alimentación por televisión y la obesidad infantil provienen de estudios ecológicos de correlación poblacional,
como el llevado a cabo en EE. UU., Australia y varios países
europeos (5), de estudios longitudinales, donde la exposición
es el tiempo de consumo televisivo o el tiempo de exposición a contenidos comerciales (6) y, por último, de ensayos
clínicos con intervenciones para limitar el tiempo que los niños
ven la televisión, que lograron reducciones significativas en
las cifras de obesidad asociadas a la reducción de la ingesta
calórica y no a cambios en la actividad física (7,8). A partir de
este tipo de evidencias se ha estimado que la publicidad puede
explicar entre un 16 y un 40% de la obesidad infantil (9,10).
19
M. J. BOSQUED ESTEFANÍA ET AL.
La obesidad en la infancia se asocia con hipertensión,
dislipemia, diabetes, trastornos ortopédicos y problemas
psicosociales. Además, los niños obesos tienen un mayor
riesgo de padecer obesidad y enfermedades no transmisibles (ENT) en la vida adulta. En España, la obesidad infantil
es un problema de salud pública de primera magnitud, pues
su prevalencia se mantiene entre las más altas de Europa
(11,12), con en torno a uno de cada tres menores en situación de sobrepeso (13).
Con el fin de reducir el impacto negativo de la publicidad
en los hábitos alimentarios de los niños, la OMS elaboró en
2010 un “Conjunto de recomendaciones sobre la promoción de alimentos y bebidas no alcohólicas dirigida a niños”,
alentando a los Gobiernos a instaurar nuevas políticas o
reforzar las existentes para conseguir dicho objetivo (14).
Además, el control de la publicidad alimentaria constituye
un área prioritaria de intervención del plan de acción de
la Organización Mundial de la Salud para prevenir y controlar las ENT 2013-2020 (15). Dado que la eficacia de la
publicidad de alimentos AGATAS depende de la frecuencia
de exposición de los menores y del poder del mensaje, el
objetivo general de las políticas deberá ir dirigido a limitar
ambos componentes de esta.
Por todo lo anterior, el estudio de la publicidad alimentaria dirigida a niños constituye un área de gran interés
en salud pública desde las dos perspectivas señaladas por
la OMS: la exposición, medida a través de estudios de la
frecuencia de emisión de anuncios de productos AGATAS
y estudios de audiencia infantil, y el poder, medido a través del uso de técnicas específicas de marketing, como el
marketing nutricional.
LA PUBLICIDAD DIRIGIDA AL PÚBLICO
INFANTIL
La OMS define la publicidad como «la presentación
pública y promoción de ideas, bienes o servicios, pagada
por un patrocinador que pretende dirigir la atención de los
consumidores hacia un producto a través de una variedad de
medios de comunicación tales como la televisión en abierto
y por cable, radio, prensa escrita, vallas publicitarias, Internet, o contacto personal» (16).
Los medios de comunicación son el vehículo que la publicidad precisa para llegar a los potenciales consumidores
del producto. El medio más utilizado continúa siendo la
televisión (3), por su rapidez de penetración, su flexibilidad
geográfica y temporal, y la calidad del mensaje (impacto
conseguido). Otra ventaja es que permite optar por diversas formas de publicidad: spot, publirreportaje, patrocinio,
telepromoción, sobreimpresión, trueque y emplazamiento
de producto.
Los anunciantes a nivel general, y muy en particular la
industria alimentaria, encuentran en los niños una población diana muy interesante. Varios estudios han puesto de
manifiesto que la presión publicitaria de alimentos aumenta
20
ALIM. NUTRI. SALUD
durante el tiempo de protección reforzada para la infancia (17,18) y durante la programación infantil (19). Los
motivos que justifican el interés de la industria alimentaria por los niños son los siguientes: el elevado número de
horas que estos pasan frente al televisor (20), su capacidad
de gasto (mercado primario o directo), su influencia en las
compras familiares, tanto de productos que ellos también
consumen (mercado de influencia directa), como respecto
de aquellos de los que no son consumidores pero sobre los
que también opinan (influencia en mercados ajenos) y su
papel como futuros consumidores (mercado futuro) (21).
En definitiva, los niños son considerados un objetivo clave,
como consumidores propiamente dichos y por su posición
estratégica en el mercado presente y futuro (22).
Un tema controvertido y de gran importancia a la hora
de regular la publicidad dirigida a menores es el establecimiento del límite de edad por debajo del cual una persona
es considerada niño o niña a estos efectos. Dependiendo de
la legislación de cada país, este límite puede oscilar desde
los 12 hasta los 18 años. La normativa española establece
el límite en 12 años para la publicidad en medios audiovisuales y escritos (23) y en 15 años para la publicidad en
Internet (24).
MARKETING NUTRICIONAL
El marketing nutricional (MN) se define como cualquier
tipo de marketing de alimentos o bebidas mediante el uso
de información nutricional o relativa a la salud más allá de
los mínimos requerimientos exigibles por la normativa reguladora del etiquetado nutricional (25), atribuyéndoles determinados beneficios cuya veracidad, precisión, adecuación y
conveniencia no siempre están debidamente contrastadas.
Existen las siguientes modalidades de marketing nutricional (26):
• Declaraciones nutricionales: alegación declarando, sugiriendo o implicando que un alimento tiene
determinadas propiedades nutricionales beneficiosas
debido a la energía (contenido calórico) que proporciona (valor energético bajo, reducido o sin aporte
energético) y a los nutrientes que contiene en cantidades reducidas (contenido reducido, bajo, muy bajo),
aumentadas (fuente, alto contenido, mayor contenido)
o que no contiene (sin).
• Alegaciones de salud: declaraciones explícitas sobre
los efectos beneficiosos para la salud de un alimento. Se refieren al efecto de un ingrediente bioacti­
vo (nutricional o no) en la reducción del riesgo de una
enfermedad (p. ej.: “ayuda a bajar el colesterol”), en el
crecimiento y desarrollo normal de los niños o en las
funciones corporales, psicológicas y comportamentales de las personas.
• Grafismos sugerentes de producto saludable: utilización de colores asociados con el bienestar, como el
verde, y de imágenes asociadas con la buena salud:
Vol. 23, N.º 1, 2016
alimentos frescos, personajes de aspecto saludable,
parajes naturales y elementos propios del ámbito rural
o agrícola, especialmente asociados a aspectos tradicionales, caseros o artesanales.
• Aval sanitario o científico: la presentación o publicidad del producto sugiere o hace constar de forma
expresa el apoyo de profesionales de la salud, instituciones sanitarias o científicas, asociaciones de pacientes y similares.
Estas estrategias publicitarias potencian el creciente interés sobre la relación entre la alimentación y la salud, de
forma que los productos que recurren a ellas son percibidos
por parte de la población como más saludables, influyendo
así en sus opciones de compra. Sin embargo, con frecuencia, los productos que contienen declaraciones nutricionales
o alegaciones de salud autorizadas muestran un perfil nutricional poco saludable, por tratarse de productos procesados
con alta densidad energética, ricos en grasas, azúcares o
sal y pobres en micronutrientes. Por ejemplo, determinados
cereales ricos en vitaminas o productos lácteos bajos en
grasa presentan, sin embargo, un perfil nutricional pobre
por su alto contenido en azúcares o por su alta densidad
energética (27-29).
Las alegaciones de salud están sujetas a una regulación estricta para comprobar que existe evidencia científica suficiente que sustente los supuestos beneficios que se
atribuyen al producto en cuestión. Lamentablemente, en
ocasiones se realizan alegaciones de salud sin evidencia
sólida que las sustente y sin la correspondiente aprobación
del órgano competente, induciendo a confusión a los consumidores (30).
Además del marketing nutricional, a continuación se
relacionan otras técnicas que intensifican el poder de la
publicidad alimentaria, algunas surgidas recientemente
como consecuencia del desarrollo de los diferentes medios
de comunicación: marketing por Internet (páginas web interactivas o integradas con otros medios, publicidad asociada
a juegos y otro tipo de aplicaciones, redes de difusión, etc.),
información llamativa en el envoltorio de los alimentos,
publicidad subliminal a través de la inserción de productos (en programas de televisión y videojuegos), presencia
de personajes de animación, patrocinios, promociones,
premios y publicidad localizada en eventos y espacios de
interés, como acontecimientos deportivos o colegios (25).
Además, se han descrito llamamientos de marketing a los
padres en productos dirigidos a niños a través de mensajes
enfocados hacia la nutrición, el crecimiento, el éxito deportivo o la armonía familiar (22).
REGULACIÓN DE LA PUBLICIDAD
ALIMENTARIA DIRIGIDA A MENORES
La Ley General de la Comunicación Audiovisual
(ley 7/2010, de 31 de marzo) (31) tiene por objeto proteger al ciudadano de posiciones dominantes de opinión o
LA PUBLICIDAD ALIMENTARIA DIRIGIDA A MENORES EN ESPAÑA
de restricción de acceso a contenidos universales de gran
interés o valor. Su artículo 7, relativo a los derechos del
menor, establece las franjas horarias de protección reforzada (entre las 8 y las 9 horas y entre las 17 y las 20 horas
los días laborables y entre las 9 y las 12 horas los sábados,
domingos y festivos) y alienta a los prestadores de servicios
de comunicación audiovisual a impulsar códigos de conducta en relación con la comunicación comercial inadecuada.
La Ley de Seguridad Alimentaria y Nutrición (ley 17/2011,
de 5 de julio) (32), en su capítulo VII “de la alimentación
saludable, la actividad física y la prevención de la obesidad”, hace referencia a la puesta en marcha en 2005 de la
estrategia NAOS, en respuesta a las recomendaciones de
la Estrategia Mundial sobre Régimen Alimentario, Actividad
Física y Salud. El capítulo VIII trata específicamente de “la
publicidad de alimentos”. Dentro de este apartado se prohíbe la aportación de testimonios, así como la sugerencia
de un aval de profesionales sanitarios o científicos (artículo
44), salvo que se trate de organizaciones, fundaciones o
instituciones relacionadas con la salud y sin ánimo de lucro
y que se comprometan a utilizar los recursos obtenidos en
actividades que favorezcan la salud (investigación y divulgación). Además, se establece que los poderes públicos favorecerán el desarrollo de sistemas de regulación voluntarios
(artículo 45) y que las autoridades competentes promoverán
la firma de acuerdos de correlación con los operadores
económicos y los prestadores de servicios de comunicación
comercial audiovisual para el establecimiento de códigos de
conducta que regulen las comunicaciones comerciales de
alimentos y bebidas dirigidos a la población menor de 15
años (artículo 46).
En España, dentro del marco de la estrategia NAOS,
se aprobó en 2005 el código PAOS, de autorregulación
de la publicidad de alimentos dirigida a menores de hasta
12 años (23). Este código establece los principios –normas
éticas– que han de regir el diseño, la ejecución y la difusión
de los mensajes publicitarios de las empresas que de forma
voluntaria se adhieran y fija los mecanismos que garantizarán el control y aplicación de las normas a través de
Autocontrol (asociación de las principales agencias publicitarias, medios de comunicación y anunciantes encargada de
gestionar el sistema de autorregulación de la comunicación
comercial en España). La adhesión de las cadenas de televisión nacionales y autonómicas al código PAOS en 2009
garantiza que sus normas éticas sean aplicables a todos
los anuncios de alimentos y bebidas dirigidos a niños por
televisión, independientemente de la adhesión o no de la
compañía fabricante.
En 2012, en respuesta a la Ley de Seguridad Alimentaria
y Nutrición, se amplió el código PAOS a la publicidad por
Internet dirigida a menores de 15 años (24). Sin embargo,
se sigue manteniendo el límite de 12 años para regular la
publicidad en medios audiovisuales e impresos, contraviniendo lo dispuesto en la ley (33).
La Comisión Europea aprobó en 2006 el Reglamento (CE) nº 1924/2006 del Parlamento Europeo y del
Consejo de 20 de diciembre de 2006, relativo a las declaraciones nutricionales y de propiedades saludables en los
21
M. J. BOSQUED ESTEFANÍA ET AL.
alimentos (en adelante, el Reglamento) (34), con el objetivo
de controlar los posibles efectos perjudiciales del empleo del
marketing nutricional en los hábitos alimentarios y la salud
de la población. El objetivo de este Reglamento es múltiple:
proteger al consumidor frente a la propaganda engañosa o
fraudulenta, armonizar la legislación en la unión Europea y
controlar el buen funcionamiento de los mercados evitando
desigualdades entre países. El Reglamento establece que sea
la Autoridad Europea de Seguridad Alimentaria (EFSA) la
encargada de validar, autorizar o rechazar las alegaciones
presentadas sobre este tipo de alimentos.
MAGNITUD Y NATURALEZA DE LA
PUBLICIDAD ALIMENTARIA EN ESPAÑA
Los resultados de un estudio de publicidad de alimentos
por televisión en varios países, realizado entre octubre de
2007 y marzo de 2008 (35), revelaron que la publicidad
alimentaria suponía entre el 11 y el 29% de la publicidad emitida y que entre el 53 y el 87% de los anuncios
eran de productos con alto contenido en sal, grasa, azúcares añadidos y/o energía, siendo estos más frecuentes
durante los picos de audiencia infantil. La presión comercial
del sector de la alimentación en España, con una media
de 6 comunicaciones comerciales de alimentos y bebidas
(CCAB)/hora de emisión, se situó entre las más altas a
nivel internacional. Además, la mayor parte de anuncios
que utilizaban técnicas de marketing persuasivo eran de
productos poco recomendables.
De acuerdo con los resultados de un estudio realizado
en 2008 por la organización de consumidores y usuarios (OCU), los niños españoles de 4 a 12 años están
expuestos diariamente a un promedio de 22 anuncios de
alimentos y bebidas, en su mayoría ricos en grasas saturadas, azúcar y sal (36). Los resultados de otro estudio promovido por la OCU en 2010 (19) pusieron de manifiesto
que el 29% de los anuncios emitidos por televisión eran de
alimentación y que esa cifra subía hasta el 34% en torno a
los programas infantiles.
Otro estudio realizado en España en 2008 sobre publicidad alimentaria por televisión en horario infantil analizó
los productos anunciados con el modelo de perfil nutricional
de Reino Unido (UKNPM), que se aplica en ese país para
determinar qué productos pueden o no anunciarse para
niños (37). Este modelo permite valorar la composición
nutricional considerando los componentes saludables (fibra,
proteínas y vegetales, fruta y frutos secos) y los menos
saludables (energía, azúcares, grasa saturada y sodio) por
cada 100 g de producto en su forma consumible. Con esos
datos, se obtiene una puntuación global mediante un sencillo algoritmo que tiene en cuenta todos los componentes, en función de la cual se determina si el producto se
considera saludable o menos saludable (38). Los resultados
mostraron que el 59,7% de las CCAB emitidas dentro del
horario infantil correspondían a productos de perfil nutricional menos saludable. Este porcentaje se incrementó hasta
22
ALIM. NUTRI. SALUD
el 71,2% durante la franja de protección reforzada, lo que
pone de manifiesto la incapacidad del código PAOS para
reducir la exposición de los niños a la publicidad televisiva
de productos AGATAS (Fig. 1). Los datos de este estudio
también revelaron que el uso del marketing nutricional en
España (30) es muy común (74%) y que más de la mitad
de los productos que recurrieron a estas técnicas resultaron
AGATAS, de acuerdo con el UKNPM (Tabla I).
A partir de los datos previos y de los de los estudios de
medición de audiencia infantil televisiva (20), se estima que
un niño español de 7 a 12 años está expuesto a 12 CCAB
diarias de productos AGATAS por televisión, lo que representa 4.380 impactos publicitarios al año de alimentos y
bebidas cuyo consumo conviene evitar o minimizar para
mantener un buen estado de salud.
EVALUACIÓN DEL CÓDIGO PAOS
Desde la entrada en vigor del Código PAOS en septiembre de 2005 y hasta el 31 de octubre de 2012, el Gabinete
Técnico de Autocontrol ha emitido 2.979 consultas legales
y copy advice® solicitados por anunciantes, agencias y televisiones, antes de su emisión. En el mismo periodo se han
presentado 20 reclamaciones por infracciones del Código.
En 2012, en relación a la publicidad alimentaria dirigida a
niños en televisión, las consultas o copy advice® solicitados
relativos al Código PAOS fueron 492 (39).
Un estudio realizado en 2008 para evaluar el funcionamiento del Código PAOS (17) encontró que en torno a la
mitad de los anuncios incumplían alguna norma, con cifras
muy similares en las empresas adheridas (49,3%) y las no
adheridas a él (50,8%) (Fig. 2), poniendo en cuestión su
efectividad. En todo caso, el Código PAOS no regula la
composición nutricional de los productos anunciados, por
lo que un estricto cumplimiento de él tampoco garantiza
una reducción de la exposición de los niños a anuncios de
productos AGATAS. La ausencia de criterios nutricionales
*Elaboración propia a partir de los datos de la referencia 37, con permiso de los autores.
Fig. 1. Evaluación global de las comunicaciones comerciales de
alimentos y bebidas (CCAB) emitidas en horario infantil y de
protección reforzada según el perfil nutricional de Reino Unido
(n = 486)*.
Vol. 23, N.º 1, 2016
LA PUBLICIDAD ALIMENTARIA DIRIGIDA A MENORES EN ESPAÑA
TABLA I
USO DEL MARKETING NUTRICIONAL EN PRODUCTOS ANUNCIADOS POR TELEVISIÓN EN ESPAÑA
Empleo de técnicas de marketing nutricional
Muy común (74% de las comunicaciones comerciales de
alimentos y bebidas)
Técnicas de marketing nutricional más utilizadas
Grafismo sugerente y alegaciones nutricionales
Modelo de perfil nutricional de Reino Unido (UKNPM)
El 55 % de los productos que recurren al marketing
nutricional resultan AGATAS*
Cumplimiento de declaraciones nutricionales y de salud
Alto para las declaraciones nutricionales
Bajo para las alegaciones de salud
Los productos que más frecuentemente recurren al marketing nutricional
Lácteos, pan, arroz, galletas y cereales de desayuno
* Alto en grasas, ácidos grasos trans, azúcares y/o sal.
en el Código PAOS contrasta con la inclusión, dentro del
conjunto mínimo de indicadores de evaluación y seguimiento de la estrategia NAOS, de varios indicadores relativos a
la magnitud y la composición nutricional de la publicidad
alimentaria (40) (p. ej.: porcentaje de anuncios de productos
AGATAS emitidos en televisión durante un día, en horario
de protección del menor y de protección reforzada, en comparación con el total de anuncios de alimentos y bebidas).
Porcentaje de anuncios
Además, el Código PAOS no es aplicable en los programas que aun teniendo gran audiencia infantil en términos
absolutos esta no sea mayoritaria, quedando por tanto fuera del marco regulatorio algunas franjas horarias con alta
audiencia infantil. En este sentido, sendos estudios realizados en Reino Unido (41) y Canadá (42) revelan que la
exposición de los niños a publicidad por televisión de productos A
­ GATAS se ha mantenido constante pese al buen
cumplimiento de las regulaciones que limitan ese tipo de
publicidad, como consecuencia del aumento paralelo de la
presión publicitaria en programas y franjas horarias no sujetas a restricciones. Por tanto, la regulación de la publicidad
de productos AGATAS dirigida a niños ha podido producir
el efecto perverso de un aumento de la exposición en los
adultos.
Adheridas
No Adheridas
Cumple
Incumple Dudoso
*Elaboración propia a partir de los datos de la referencia 17, con permiso de los autores.
Fig. 2. Comparación respecto al cumplimiento del Código PAOS
entre anuncios de empresas adheridas y no adheridas a él*.
CONCLUSIONES
Tal como hemos mencionado previamente, y de acuerdo
con los resultados de una revisión sistemática publicada en
2013, la adherencia a códigos de regulación voluntarios
puede no ser suficiente para disminuir el número de anuncios de productos AGATAS o para reducir la exposición
de los menores a este tipo de publicidad (43). Por tanto, la
regulación del valor nutricional es condición necesaria pero
no suficiente para garantizar una reducción de la exposición
de los niños a la publicidad por TV de alimentos AGATAS.
Además, resulta imprescindible ampliar el término de publicidad dirigida a niños en cuanto al rango de edad, horarios
de emisión y audiencia infantil en términos absolutos y no
solo relativos como hasta ahora (44).
Para mejorar los hábitos alimentarios de los menores se
requiere abordar las causas que nos han llevado a rodearnos
de un entorno alimentario poco saludable, dominado por
productos procesados, altamente energéticos y promocionados de forma intensiva. Para ello es necesario implicar a
la industria alimentaria (productos, precios, promoción), los
Gobiernos (regulaciones y leyes, política fiscal, promoción
de la salud) y la sociedad en su conjunto (comida tradicional, recuperación de hábitos) (45). En España, son necesarios más estudios dirigidos a recabar información sobre
el impacto del Código PAOS en base a los indicadores de
evaluación y seguimiento relativos a la magnitud y la composición nutricional de la publicidad alimentaria establecidos
por la AESAN (2011).
En conclusión, en la lucha contra la obesidad infantil y
sus consecuencias resulta necesario, entre otras muchas
cosas, revisar los sistemas actuales de regulación de la publicidad alimentaria y desarrollar normativas más restrictivas
que atiendan a criterios nutricionales, más allá de los aspectos relativos a las técnicas de marketing ya contemplados
en el Código PAOS. Además, para que las restricciones
resulten eficaces para reducir la presión publicitaria dirigida
a menores (al menos hasta 16 años) de productos AGATAS
es imprescindible que se contemplen todos los programas y
horarios con una audiencia infantil significativa, aun cuando
23
M. J. BOSQUED ESTEFANÍA ET AL.
estos se emitan en cadenas generalistas y no estén específicamente dirigidos a niños●
CORRESPONDENCIA:
María José Bosqued Estefanía
Escuela Nacional de Sanidad
Instituto de Salud Carlos III
Sinesio Delgado, 5
28029 Madrid
e-mail: [email protected]
BIBLIOGRAFÍA
1. Carter OB, Patterson LJ, Donovan RJ, Ewing MT, Roberts CM.
Children’s understanding of the selling versus persuasive intent
of junk food advertising: Implications for regulation. Soc Sci
Med 2011;72:962-8.
2. Blades M, Oates C, Li S. Children’s recognition of advertisements on television and on Web pages. Appetite
2013;62:190-3.
3. World Health Organization. Marketing of foods high in fat,
salt and sugar to children: Update 2012-2013. Copenhagen,
Denmark: WHO Regional Office for Europe; 2013 p. 1-34.
Disponible en: http://www.euro.who.int/__data/assets/
pdf_file/0019/191125/e96859.pdf
4. Birch LL, Fisher JO. Development of Eating behaviors among
children and adolescents. Pediatrics 1998;101(Supl. 2):
539-49.
5. Lobstein T, Dibb S. Evidence of a possible link between obesogenic food advertising and child overweight. Obes Rev
2005;6:203-8.
6. Zimmerman FJ, Bell JF. Associations of television content type
and obesity in children. Am J Public Health 2010;100(2):334-40.
7. Robinson TN, Nited HEU, Has ST. Reducing children’s television viewing. JAMA 1999;282:1561-7.
8. Epstein LH, Roemmich JN, Robinson JL, Paluch RA,
Winiewicz DD, Fuerch JH, et al. A randomized trial of the
effects of reducing television viewing and computer use on
body mass index in young children. Arch Pediatr Adolesc Med
2008;162(3):239-45.
9. Goris JM, Petersen S, Stamatakis E, Veerman JL. Television
food advertising and the prevalence of childhood overweight
and obesity: A multicountry comparison. Public Health Nutr
2010;13(7):1003-12.
10. Veerman JL, Van Beeck EF, Barendregt JJ, Mackenbach JP.
By how much would limiting TV food advertising reduce childhood obesity? Eur J Public Health. 2009;19(4):365-9.
11. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of
overweight and obesity in children and adults during 19802013: A systematic analysis for the Global Burden of Disease
Study 2013. Lancet 2014;6736(14):1-16.
12. OECD (2013), Health at a Glance 2013: OECD Indicators, OECD Publishing. Disponible en: http://dx.doi.
org/10.1787/health_glance-2013-en
13. Sánchez-Cruz J-J, Jiménez-Moleón JJ, Fernández-Quesada F,
Sánchez MJ. Prevalence of child and youth obesity in Spain
in 2012. Rev Esp Cardiol. 2013;66(5):371-6.
14. World Health Organization. Set of recommendations on the
marketing of foods and non-alcoholic beverages to children
Geneva, Switzerland: World Health Organization; 2010 p.
1-16. Disponible en: http://whqlibdoc.who.int/publications/2010/9789241500210_eng.pdf
24
ALIM. NUTRI. SALUD
15. World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 20132020;2013. Disponible en: http://apps.who.int//iris/bitstre
am/10665/94384/1/9789241506236_eng.pdf
16. World Health Organization. A framework for implementing
the set of recommendations on the marketing of foods and
non-alcoholic beverages to children. WHO, Geneva, 2012.
17. Romero-Fernández MM, Royo-Bordonada MA, Rodríguez-Artalejo F. Compliance with self-regulation of television food and
beverage advertising aimed at children in Spain. Public Health
Nutr 2010;13:1013-21.
18. Pérez Pérez ML. Informe general sobre menores y televisión
en Andalucía. Sevilla: Consejo Audiovisual de Andalucía; 2008.
19. Organización de Consumidores y Usuarios. Publicidad de alimentos en programas infantiles. Hay que cortar por lo sano.
OCU-SALUD 2010;92:22-5.
20. Busquet J, Reinares P. La audiencia infantil de televisión en
España. Ni tan escasa ni tan uniforme. Telos. 2009;81:12941. Disponible en: http://telos.fundaciontelefonica.com/
docs/2010/05/11/12240001_4_4_0.pdf
21. Aktas Arnas Y. The effects of television food advertisement on
children’s food purchasing requests. Pediatr Int 2006;48:138-45.
22. Cairns BG, Angus K, Hastings G. The extent, nature and
effects of food promotion to children: a review of the evidence
to december 2008. Geneva, Switzerland: World Health Organization; 2009 p. 1-48. Disponible en: http://www.who.int/
dietphysicalactivity/Evidence_Update_2009.pdf
23. Ministerio de Sanidad y Consumo. Agencia Española de Seguridad Alimentaria. Código de Autorregulación de la Publicidad
de Alimentos dirigida a menores, prevención de la obesidad
y salud. Código PAOS. Madrid: Ministerio de Sanidad y Consumo; 2005.
24. Ministerio de Sanidad, Servicios Sociales e Igualdad. Código
de corregulación de la publicidad de alimentos y bebidas dirigida a menores, prevención de la obesidad y salud (Código
PAOS). Disponible en: http://www.naos.aesan.msssi.gob.es/
naos/ficheros/empresas/CODIGO_PAOS_2012.pdf
25. Colby SE, Johnson L, Scheet A, Hoverson B. Nutrition marketing on food labels. Journal of Nutrition Education and
Behavior 2010;42:92-8.
26. Royo Bordonada MA. La alimentación y el consumidor.
Madrid: Escuela Nacional de Sanidad. Instituto de Salud Carlos III; 2013. Disponible en: http://gesdoc.isciii.es/gesdoccontroller?action=download&id=06/11/2013-9d151ea05e
27. Jones SC, Andrews KL, Tapsell L, Williams P, McVie D. The
extent and nature of «health messages» in magazine food advertising in Australia. Asia Pac J Clin Nutr 2008;17:317-24.
28. Harris JL, Thompson JM, Schwartz MB, Brownell KD.
­Nutri­­tion-related claims on children’s cereals: What do they
mean to parents and do they influence willingness to buy?
Public Health Nutr 2011;2:1-6.
29. Dean M, Lähteenmäki L, Shepherd R. Nutrition communication: Consumer perceptions and predicting intentions. Proc
Nutr Soc 2011;70:19-25.
30. Cuevas-Casado I, Romero-Fernández MM, Royo-Bordonada MÁ. Uso del marketing nutricional en productos anunciados por televisión en España. Nutr Hosp 2012;27:1569-75.
31. Boletín Oficial del Estado. Ley 7/2010, de 31 de marzo, General de la Comunicación Audiovisual; 2010 p. 30157–209.
Disponible en: http://www.boe.es/boe/dias/2010/04/01/
pdfs/BOE-A-2010-5292.pdf
32. Boletin Oficial del Estado (2011) Ley 17/2011, de 5 de julio,
de seguridad alimentaria y nutrición. Boletin Oficial del Estado
n.º 160, 6 Jul 2011, sec. I, p. 71283. Disponible en: http://
www.boe.es/dias/2011/07/06/ pdfs/BOE-A-2011-11604.pdf
33. Royo-Bordonada MA. The Spanish experience of public-private partnerships with the drinks and food industries. - BMJ
2014;348:g1189.
Vol. 23, N.º 1, 2016
34. Reglamento (CE) n.° 1924/2006 del Parlamento Europeo
y del Consejo, de 20 de diciembre de 2006, relativo a las
declaraciones nutricionales y de propiedades saludables en
los alimentos. Diario Oficial de la Unión Europea, núm. 404
de 30 de diciembre de 2006. p. 9-25.
35. Kelly B, Halford JCG, Boyland EJ, Chapman K, Bautista-Castaño I, Berg C, et al. Television Food Advertising to Children:
A Global Perspective. Am J Public Health 2010;100:1730-6.
36. Organización de Consumidores y Usuarios. Con la comida no
se juega. OCU-SALUD. 2008;81:10-3.
37. Romero-Fernández MM, Royo-Bordonada MA, Rodríguez-Artalejo F. Evaluation of food and beverage television advertising
during children’s viewing time in Spain using the UK nutrient
profile model. Public Health Nutr 2013;16:1314-20.
38. Department of Health. Nutrient Profiling Technical Guidance 2011 p. 1-18. Disponible en: https://www.gov.uk/
government/uploads/system/uploads/attachment_data/
file/216094/dh_123492.pdf
39. Autocontrol. Autocontrol de la publicidad. Resultados balance
actividad 2012. Madrid; 2013. Disponible en: http://www.
autocontrol.es/pdfs/balance%2012%20AUTOCONTROL.pdf
40. Ministerio de Sanidad, Política Social e Igualdad. Evaluación
y seguimiento de la Estrategia NAOS: conjunto mínimo de
indicadores. Agencia Española de Seguridad Alimentaria y
LA PUBLICIDAD ALIMENTARIA DIRIGIDA A MENORES EN ESPAÑA
41.
42.
43.
44.
45.
Nutrición. Madrid: Ministerio de Sanidad, Política Social e
Igualdad; 2011. Disponible en: http://www.naos.aesan.
msps.es/naos/ficheros/investigacion/ documento_indicadores_en.pdf
Adams J, Tyrrell R, Adamson AJ, White M. Effect of restrictions on television food advertising to children on exposure to
advertisements for ‘less healthy’ foods: Repeat Cross-sectional
study. PLoS ONE 2012;7:e31578.
Kent MP, Wanless A. The influence of the children’s food and
beverage advertising initiative: Change in children’s exposure
to food advertising on television in Canada between 20062009. International Journal of Obesity 2014;38:558-62.
Galbraith-Emami S, Lobstein T. The impact of initiatives to
limit the advertising of food and beverage products to children:
A systematic review. Obes Rev 2013;14:960-74.
Harris JL, Sarda V, Schwartz MB, Brownell KD. Redefining
“Child-Directed Advertising” to Reduce Unhealthy Television
Food Advertising. American Journal of Preventive Medicine
2013;44:358-64.
Swinburn B, Sacks G, Vandevijvere S, Kumanyika S, Lobstein T,
Neal B, et al. INFORMAS (International Network for Food and
Obesity/non-communicable diseases Research, Monitoring
and Action Support): Overview and key principles. Obes Rev
2013;14:1-12.
25