Download Microsoft PowerPoint - V\355ctor Parada.ppt [Modo de compatibilidad]
Document related concepts
no text concepts found
Transcript
An evolutionary and constructive approach to the crew scheduling problem R. Elizondo1, V. Parada1, L. Pradenas2, C. Artigues3 1 University of Santiago of Chile; Complex Engineering Systems Institute 2 Industrial Engineering Department, University of Concepcion 3 LAAS-CNRS, Toulouse France TRANSLOG, Viña del Mar, Diciembre de 2009 Problem Description Data set: (sk, ek, ok, dk ), denotes starting time, ending time, trip origin and trip destination . Index Train Starting time Trip Origin Ending time Trip destination 1 06 06:55:00 ST2 07:25:25 ST1 2 05 07:10:46 ST1 07:40:32 ST2 3 07 07:14:17 ST1 07:44:03 ST2 4 08 07:17:48 ST2 07:47:34 ST1 5 01 07:20:00 ST2 07:49:46 ST1 6 09 07:21:19 ST1 07:51:05 ST2 7 02 07:24:49 ST2 07:54:35 ST1 8 12 07:24:50 ST1 07:54:36 ST2 9 05 07:28:21 ST1 07:58:07 ST2 10 03 07:29:38 ST2 07:59:24 ST3 … … … … … Fragment of a Train movement scheduling TRANSLOG, Viña del Mar, Diciembre de 2009 … Problem Description Objective: •Generate a set of duties from a trip timetable while minimizing both the idle time and the number of duties. Constraints: •Relief facilities •Maximum conduction time •Continuous conduction time •Meal breaks •Work shifts •Conductors as passengers •Routes •Conduction interruptions TRANSLOG, Viña del Mar, Diciembre de 2009 Problem Description ♦ Schematic Representation of the Problem TRANSLOG, Viña del Mar, Diciembre de 2009 Related Work Vehicle movement planning Crew Scheduling Crew Rostering TRANSLOG, Viña del Mar, Diciembre de 2009 Related Work Portuguese and Dutch train systems; Artificial intelligence techniques - E. Morgado and J. Martins (1992; 1998) Italian train system ; Branch and cut A. Caprara, M. Fischetti, P. Toth, D. Vigo and P. Guida (1997; 1999) Australian train system; Binary Programming Ernst, Jiang, Krishnamoorthy, Nott and Sier (2001) Lisbon underground system; Constructive Algorithm - L. Cavique et al. (1999) Singapoure MRT and Hong Kong ; Heuristic method K. Chew, J.Pang, Q. Liu, J. Ou and C. Teo (2001) German Railway system; Heuristic column generation-based procedures - L. Bengtsson, T. Galia, T. Gustafson, C. Hjorring and N. Kohl (2004) Portuguese bus system; GA and TS - Lourenco et al. l (2001) and Dias, de Sousa, & Cunha (2002) TRANSLOG, Viña del Mar, Diciembre de 2009 Crew Scheduling Problem Dutch railway network; Column generation D. Pottho, D. Huisman, G. Desaulniers, (2008) Netherlands Railways, Heuristic Method E. Abbink, J. van’t Wout, D. Huisman (2007) Lisbon underground system; LS and TS M. Gomes, L. Cavique, I. Themido (2006) The train driver recovery problem—A set partitioning based model and solution method - N. Rezanovaa, D. Ryan (2010) TRANSLOG, Viña del Mar, Diciembre de 2009 Constructive-Evolutive Method • A constructive method can be represented as an And/Or graph. • To search on this graph: A*, AO*, AAO*. 1 2 3 4 f(n) = g(n) + h(n) 5 6 7 8 9 • Combinatorial Explotion • Evolutive Estrategy. TRANSLOG, Viña del Mar, Diciembre de 2009 Constructive-Evolutive Method 1 2 5 3 6 7 9 Trips 4 8 Partial Duties Feasible Solution Feasible Operator TRANSLOG, Viña del Mar, Diciembre de 2009 Constructive-Evolutive Method We consider 4 sets: • A Genetic Algorithm population (A). In each generation we update the population by creating constructions each time larger and more complex. (A) • Best obtained constructions. (B) • Basic elements. (E) • Solutions generated by crossover (C) Selection by means of roulette TRANSLOG, Viña del Mar, Diciembre de 2009 Constructive-Evolutive Method TRANSLOG, Viña del Mar, Diciembre de 2009 Constructive-Evolutive Method TRANSLOG, Viña del Mar, Diciembre de 2009 Problem Modelling Crossover and mutation: Constructive Parent 2 Parent 1 2 1 3 4 7 6 9 5 Offspring 1 Offspring 2 Stopping criterion: All trips are inserted in a solution TRANSLOG, Viña del Mar, Diciembre de 2009 8 Problem Modelling Evaluation Function: Total idle time: Construction Cost: Heuristic Function: TRANSLOG, Viña del Mar, Diciembre de 2009 Greedy method. Constructive Algorithm: 1 2 3 4 5 6 7 8 9 Duty 1 Duty 2 Duty 3 TRANSLOG, Viña del Mar, Diciembre de 2009 Greedy method. TRANSLOG, Viña del Mar, Diciembre de 2009 Tabu search TRANSLOG, Viña del Mar, Diciembre de 2009 Convergence of C-E TRANSLOG, Viña del Mar, Diciembre de 2009 Results comparison TRANSLOG, Viña del Mar, Diciembre de 2009 Conclusions ♦ In 7 out of 10 instances CE found the lowest number of duties ♦ The lowest computing time correspond to the Greedy Algorithm ♦ Rostering Constrains can be easily considered in this approach TRANSLOG, Viña del Mar, Diciembre de 2009
Related documents