Download Hoja de datos del diodo
Document related concepts
Transcript
FACULTAD DE INGENIERÍA ELECTROMECÁNICA Hoja de datos del diodo PRESENTADO POR: grupo PROFESOR: INGENIERO JUAN CARLOS GONZÁLEZ SALAMANCA GRUPO E9B Bogotá 29 agosto del 2014 Hoja de datos del diodo Introducción: La hoja de datos del fabricante da información detallada sobre un dispositivo con el fin de que pueda ser utilizado apropiadamente en una aplicación específica. Una hoja de datos típica proporciona Capacidades máximas, características eléctricas, datos mecánicos y gráficas de varios parámetros. Los datos específicos que se deben incluir para el uso apropiado del dispositivo. Incluyen: 1. El voltaje en directa VF (a una corriente y temperatura especificadas) 2. La corriente máxima en directa IF (a una temperatura especificada) 3. La corriente de saturación en inversa IR (a un voltaje y temperatura especificados) 4. El valor nominal de voltaje inverso [PIV, PRV, o V(BR), donde BR proviene del término “breakdown” (ruptura) (a una temperatura especificada)] 5. El nivel de disipación de potencia máximo a una temperatura particular 6. Niveles de capacitancia 7. Tiempo de recuperación en inversa trr 8. Intervalo de temperatura de operación La figura 1 muestra una hoja de datos de un diodo rectificador típico. La presentación de la información en hojas de datos puede variar de un fabricante a otro pero, en términos generales, todas dan la misma información (algunas proporcionan más o menos datos que otras). La información mecánica, tal como dimensiones del encapsulado, no se muestran en la hoja de datos particular pero en general están disponibles con el fabricante. Note que en esta hoja de datos hay tres categorías de datos dados en forma de tabla y cuatro tipos de características mostrados en forma gráfica. Figura 1. Continuación Figura 1 Según el tipo de diodo que se esté considerando, es posible que también se den más datos, como intervalo de frecuencia, nivel de ruido, tiempo de conmutación, niveles de resistencia térmica y valores repetitivos pico. Para la aplicación pensada, la importancia de los datos casi siempre es aparente. Si también se da el coeficiente de disipación o potencia máxima, se entiende que es igual al siguiente producto: Donde ID y VD son la corriente y el voltaje en el diodo, respectivamente, en un punto de operación particular. Si aplicamos el modelo simplificado para una aplicación particular (una ocurrencia común), podemos sustituir VD _ VT _ 0.7 V para un diodo de silicio en la ecuación (1.8) y determinar la disipación de potencia resultante por comparación contra el coeficiente de potencia máximo. Es decir, En las figuras 2 y 3 aparecen los datos provistos para un diodo de alto voltaje y fugas Es casas. Este ejemplo representaría la lista ampliada de datos y características. El término rectificador se aplica a un diodo cuando se utiliza con frecuencia en un proceso de rectificación. Figura 2 Las Áreas específicas de las hojas de especificaciones aparecen resaltadas en tonos de gris (figura 2 y 3), con las letras que corresponden a la siguiente descripción: A. La hoja de datos resalta el hecho de que el diodo de silicio de alto voltaje tiene un voltaje de polarización en inversa mínimo de 125 V con una corriente de polarización en inversa especificada. B. Observe el amplio intervalo de manejo de temperatura. Siempre tenga en cuenta que las hojas de datos en general utilizan la escala en centígrados, con 200°C _ 392°F y – 65°C _ –85°F. C. El nivel máximo de disipación de potencia está dado por PD _ VDID _ 500 mW _ 0.5 W. El efecto de factor de variación lineal del valor nominal de potencia de 3.33 mW/°C se demuestra en la figura 2-a. Una vez que la temperatura excede de 25°C el coeficiente de potencia nominal máxima se reduce en 3.33 mW por cada 1°C de incremento de temperatura. A una temperatura de 100°C, la cual es el punto de ebullición del agua, el coeficiente de potencia nominal máxima se reduce a la mitad de su valor original. Una temperatura de 25°C es típica en el interior de un gabinete que contiene equipo electrónico en operación en una situación de baja potencia. D. La corriente máxima sostenible es de 500 mA. La gráfica de la figura 3-b revela que la corriente en directa a 0.5 V es aproximadamente de 0.01 mA, pero salta a 1 mA (100 veces mayor) a alrededor de 0.65 V. Con 0.8 V la corriente es de más de 10 mA y exactamente arriba de 0.9 V se aproxima a 100 mA. De hecho, la curva de la figura 3-b no se ve como las curvas de características que aparecen en las últimas secciones. Éste es el resultado de utilizar una escala logarítmica para la corriente y una lineal para el voltaje. Las escalas logarítmicas se utilizan a menudo para proporcionar un intervalo más amplio de valores de una variable en una cantidad de espacio limitada. Si se utilizara una escala lineal para la corriente, sería imposible mostrar un intervalo de valores desde 0.01 hasta 1000 mA. Si las divisiones verticales estuvieran en incrementos de 0.01 mA, se requerirían 100,000 intervalos iguales en el eje vertical para alcanzar 1000 mA. Por el momento tenga presente que el nivel de voltaje a niveles de corriente dados se puede hallar por medio de la intersección con la curva. Con valores verticales por encima de un nivel como 10 mA, el siguiente nivel es 2 mA, seguido por 3 mA, 4 mA y 5 mA. Los niveles de 6 mA a 10 mA se determinan dividiendo la distancia en intervalos iguales (no la distribución verdadera, sino lo bastante aproximada considerando las gráficas provistas). Para el siguiente nivel serían 10 mA, 20 mA, 30 mA, etc. La gráfica de la figura 3-b es una gráfica semilogarítmica, porque sólo un eje utiliza una escala logarítmica. En el capítulo 9 se dirá mucho sobre escalas logarítmicas. E. Los datos proporcionan un intervalo de VF (voltajes de polarización en directa) por cada nivel de corriente. Cuanto más alta sea la corriente en directa, mayor será la polarización en directa aplicada. A 1 mA vemos que VF puede variar de 0.6 V a 0.68 V, pero a 200 mA puede ser tan alto como de 0.85 V a 1.00 V. En el intervalo completo de niveles de corriente con 0.6 V a 1 mA y 0.85 V a 200 mA, con toda certeza es una aproximación razonable utilizar 0.7 V como el valor promedio. F. Los datos provistos revelan con claridad cómo se incrementa la corriente de saturación en inversa con la polarización en inversa aplicada a una temperatura fija. A 25°C la corriente de polarización en inversa máxima se incrementa de 0.2 nA a 0.5 nA debido a un aumento del voltaje de polarización en inversa por el mismo factor de 5; a 125°C se eleva por un factor de 2 al nivel de 1 mA. Observe el cambio extremo de la corriente de saturación en inversa con la temperatura en el momento en que el coeficiente de corriente máximo cambia de 0.2 nA a 25°C a 500 nA a 125°C (a un voltaje de polarización en inversa fijo de 20 V). Un incremento similar ocurre a un potencial de polarización en inversa de 100 V. Las gráficas semilogarítmicas de las figuras 3-c y 3-d indican cómo cambia la corriente de saturación en inversa con cambios en el voltaje en inversa y la temperatura. A primera vista la figura 3-c podría indicar que la corriente de saturación en inversa es bastante constante con cambios del voltaje en inversa. Sin embargo, en ocasiones esto puede ser el efecto de utilizar una escala logarítmica para el eje vertical. La corriente en realidad cambió de un nivel de 0.2 nA a un nivel de 0.7 nA en el intervalo de voltajes que representa un cambio de casi 6 a 1. El dramático efecto de la temperatura en la corriente de saturación en inversa se muestra con claridad en la figura 3-d. A un voltaje de polarización en inversa de 125 V la corriente de polarización en inversa se incrementa de un nivel de alrededor de 1 nA a 25°C a aproximadamente 1 mA a 150°C, un incremento de un factor de 1000 sobre el valor inicial. La temperatura y la polarización en inversa aplicada son factores muy importantes en diseños sensibles a la corriente de saturación en inversa. G. Como se muestra en la lista de datos en la figura 3-e, la capacitancia de transición a un voltaje de polarización en inversa de 0 V es 5 pF a una frecuencia de prueba de 1 MHz. Observe el fuerte cambio del nivel de capacitancia a medida que el voltaje de polarización en inversa se incrementa. H. El tiempo de recuperación en inversa es de 3 ms en las condiciones de prueba mostradas. Éste no es un tiempo rápido para algunos de los sistemas de alto desempeño actuales en uso hoy en día; sin embargo, es aceptable para varias aplicaciones de baja y media frecuencia. Las curvas de la figura 3-f indican la magnitud de la resistencia de ca del diodo contra la corriente en directa. A medida que recorremos hacia arriba el eje de corriente de la figura 3-f es evidente que si seguimos la curva, la resistencia dinámica se reducirá. A 0.1 mA se acerca a 1 k_; a 10 mA, a 10 _, y a 100 mA, sólo 1 _; esto evidentemente apoya el análisis anterior. A menos que se tenga experiencia leyendo escalas logarítmicas, la lectura de la curva es un desafío a niveles entre los indicados porque es una gráfica log-log. Tanto el eje vertical como el horizontal emplean una escala logarítmica. Figura 3. Bibliografía: Electrónica: teoría de circuitos y dispositivos electrónicos, ROBERT L.BOYLESTAD. Dispositivos Electrónicos, Thomas L. Floyd.