Download descargar documento
Document related concepts
Transcript
INTRODUCIÓN. MATERIALES CONDUCTORES Todos los cuerpos o elementos químicos existentes en la naturaleza poseen características diferentes, agrupadas todas en la denominada “Tabla de Elementos Químicos”. Desde el punto de vista eléctrico, todos los cuerpos simples o compuestos formados por esos elementos se pueden dividir en tres amplias categorías: Conductores Aislantes Semiconductores Los materiales conductores ofrecen una baja resistencia al paso de la corriente eléctrica. Los semiconductores se encuentran a medio camino entre los conductores y los aislantes, pues en unos casos permiten la circulación de la corriente eléctrica y en otros no. Finalmente los cuerpos aislantes ofrecen una alta resistencia al paso de la corriente eléctrica. En la figura superior se muestran algunos de esos materiales: A) Conductor de alambre de cobre. B) Diodos y C) transistor (dispositivos semiconductores en ambos casos). D) Aislantes de porcelana instalados en un transformador distribuidor de energía eléctrica de bajo voltaje y E) Aislantes de vidrio soportando cables a la intemperie montados en un poste para distribución de energía eléctrica de media tensión. Los aislantes, al contrario de los conductores, constituyen materiales o cuerpos que ofrecen una alta resistencia al paso de la corriente eléctrica. MATERIALES CONDUCTORES En la categoría “conductores” se encuentran agrupados todos los metales que en mayor o menor medida conducen o permiten el paso de la corriente eléctrica por sus cuerpos. Entre los mejores conductores por orden de importancia para uso en la distribución de la energía eléctrica de alta, media y baja tensión, así como para la fabricación de componentes de todo tipo como dispositivos y equipos eléctricos y electrónicos, se encuentran el cobre (Cu), aluminio (Al), plata (Ag), mercurio (Hg) y oro (Au). Los conductores de cobre son los materiales más utilizados en los circuitos eléctricos por la baja resistencia que presentan al paso de la corriente. En general el núcleo de los átomos de cualquier elemento que forman todos los cuerpos sólidos, líquidos y gaseosos que conocemos se encuentran rodeados por una nube de electrones que giran su alrededor, distribuidos en una o en varias órbitas, capas o niveles de energía. Al átomo de cada elemento contemplado en la “Tabla de Elementos Químicos” le corresponde un número atómico que sirve para diferenciar las propiedades de cada uno de ellos. Ese número coincide también con la cantidad total de electrones que giran alrededor del núcleo de cada átomo en particular. No obstante, independientemente de la cantidad total de electrones que le corresponda a cada elemento, en la última capa u órbita sólo pueden girar de uno a ocho electrones como máximo. Diferentes formas de representar de forma gráfica un mismo átomo, en este caso de cobre (Cu): A) Normal, en la que aparecen todos los electrones girando alrededor del núcleo de ese elemento en sus respectivas órbitas. B) Representación plana en la que se pueden observar, de forma parcial, las cuatro órbitas o niveles de energía que le corresponden a ese átomo con la distribución numérica de todos los electrones que posee en cada una de ellas. (29 en total). C) La misma representación plana, pero más simplificada, en la que se muestra solamente la última órbita o banda de valencia, identificada con. el número “1”, o sea, el único electrón que posee en esa posición. D) El mismo átomo mostrado ahora en representación plana, con la última órbita y el único electrón que gira en la misma. Banda de valencia Como ya conocemos, todos átomos que integran cualquier cuerpo material poseen órbitas o capas, denominadas también niveles de energía, donde giran electrones alrededor de sus núcleos. La última de esas capas se denomina “banda de valencia” y es donde giran los electrones que en unos casos el átomo puede ser ceder, como ocurre con los metales y en otros casos puede atraer o captar de la banda de valencia de otros átomos cercanos. La banda de valencia es el nivel de energía que determina que un cuerpo se comporte como conductor, aislante o semiconductor. En el caso de los metales en la última órbita o “banda de valencia” de sus átomos sólo giran entre uno y tres electrones como máximo, por lo que su tendencia es cederlos cuando los excitamos empleando métodos físicos o químicos. Las respectivas valencias de trabajo (o números de oxidación) de los metales son las siguientes: +1, +2 y +3. Esos números con signo positivo (+) delante, corresponden a la cantidad de electrones que pueden ceder los átomos de los metales, de acuerdo con la cantidad que contiene cada uno en la última órbita. En general la mayoría de los elementos metálicos poseen conductividad eléctrica, es decir, se comportan como conductores de la electricidad en mayor o menor medida. Los que poseen un solo electrón (a los que les corresponde el número de valencia +1, como el cobre), son los que conducen la corriente eléctrica con mayor facilidad. En los conductores eléctricos las bandas de energía, formadas por la banda de conducción y la banda de valencia del elemento metálico, se superponen facilitando que los electrones puedan saltar desde la última órbita de un átomo a la de otro de los que integran también las moléculas del propio metal. Es por eso que cuando se aplica corriente eléctrica a un circuito formado por conductores de cobre, por ejemplo, los electrones fluyen con facilidad por todo el cuerpo metálico del alambre que integra el cable. Normalmente las bandas de energías se componen de: 1) una banda de valencia. 2) una banda de conducción y, 3) otra banda interpuesta entre las dos anteriores denominada “banda prohibida”. La función de esta última es impedir o dificultar que los electrones salten desde la banda de valencia hasta la banda de conducción. En el caso de los metales la banda prohibida no existe, por lo que los electrones en ese caso necesitan poca energía para saltar de una banda a la otra. Debido a que en los metales conductores de corriente eléctrica la banda de valencia o última órbita del átomo pose entre uno y tres electrones solamente (de acuerdo con el tipo de metal de que se trate), existe una gran cantidad de estados energéticos “vacíos” que permiten excitar los electrones, bien sea por medio de una reacción química, o una reacción física como la aplicación de calor o la aplicación de una diferencia de potencial (corriente eléctrica) que ponga en movimiento el flujo electrónico. En general los metales mejores conductores de electricidad como el cobre, la plata y el oro poseen una alta densidad de electrones portadores de carga en la banda de valencia, así como una alta ocupación de niveles de energía en la banda de conducción. Hay que destacar que aunque la plata y el oro son mucho mejores conductores de la corriente eléctrica que el cobre, la mayoría de los cables se fabrican con este último metal o con aluminio en menor proporción, por ser ambos metales buenos conductores de la corriente eléctrica, pero mucho más baratos de producir y comercializar que la plata y el oro. MATERIALES AISLANTES O DIELÉCTRICOS A diferencia de los cuerpos metálicos buenos conductores de la corriente eléctrica, existen otros como el aire, la porcelana, el cristal, la mica, la ebonita, las resinas sintéticas, los plásticos, etc., que ofrecen una alta resistencia a su paso. Esos materiales se conocen como aislantes o dieléctricos. Al contrario de lo que ocurre con los átomos de los metales, que ceden sus electrones con facilidad y conducen bien la corriente eléctrica, los de los elementos aislantes poseen entre cinco y siete electrones fuertemente ligados a su última órbita, lo que les impide cederlos. Esa característica los convierte en malos conductores de la electricidad, o no la conducen en absoluto. En los materiales aislantes, la banda de conducción se encuentra prácticamente vacía de portadores de cargas eléctricas o electrones, mientras que la banda de valencia está completamente llena de estos. Como ya conocemos, en medio de esas dos bandas se encuentra la “banda prohibida”, cuya misión es impedir que los electrones de valencia, situados en la última órbita del átomo, se exciten y salten a la banda de conducción. La energía propia de los electrones de valencia equivale a unos 0,03 eV (electronvolt) aproximadamente, cifra muy por debajo de los 6 a 10 eV de energía de salto de banda (Eg) que requerirían poseer los electrones para atravesar el ancho de la banda prohibida en los materiales aislantes. MATERIALES SEMICONDUCTORES Los primeros semiconductores utilizados para fines técnicos fueron pequeños detectores diodos empleados a principios del siglo 20 en los primitivos radiorreceptores, que se conocían como “de galena”. Ese nombre lo tomó el radiorreceptor de la pequeña piedra de galena o sulfuro de plomo (PbS) que hacía la función de diodo y que tenían instalado para sintonizar las emisoras de radio. La sintonización se obtenía moviendo una aguja que tenía dispuesta sobre la superficie de la piedra. Aunque con la galena era posible seleccionar y escuchar estaciones de radio con poca calidad auditiva, en realidad nadie conocía que misterio encerraba esa piedra para que pudiera captarlas. En 1940 Russell Ohl, investigador de los Laboratorios Bell, descubrió que si a ciertos cristales se le añadía una pequeña cantidad de impurezas su conductividad eléctrica variaba cuando el material se exponía a una fuente de luz. Ese descubrimiento condujo al desarrollo de las celdas fotoeléctricas o solares. Posteriormente, en 1947 William Shockley, investigador también de los Laboratorios Bell, Walter Brattain y John Barden, desarrollaron el primer dispositivo semiconductor de germanio (Ge), al que denominaron “transistor” y que se convertiría en la base del desarrollo de la electrónica moderna. Los "semiconductores" como el silicio (Si), el germanio (Ge) y el selenio (Se), por ejemplo, constituyen elementos que poseen características intermedias entre los cuerpos conductores y los aislantes, por lo que no se consideran ni una cosa, ni la otra. Sin embargo, bajo determinadas condiciones esos mismos elementos permiten la circulación de la corriente eléctrica en un sentido, pero no en el sentido contrario. Esa propiedad se utiliza para rectificar corriente alterna, detectar señales de radio, amplificar señales de corriente eléctrica, funcionar como interruptores, transistores, circuitos integrados o microprocesadores. Los átomos de los elementos semiconductores pueden poseer dos, tres, cuatro o cinco electrones en su última órbita, de acuerdo con el elemento específico al que pertenecen. No obstante, los elementos más utilizados por la industria electrónica, como el silicio (Si) y el germanio (Ge), poseen solamente cuatro electrones en su última órbita. En este caso, el equilibrio eléctrico que proporciona la estructura molecular cristalina característica de esos átomos en estado puro no les permite ceder, ni captar electrones. Normalmente los átomos de los elementos semiconductores se unen formando enlaces covalentes y no permiten que la corriente eléctrica fluya a través de sus cuerpos cuando se les aplica una diferencia de potencial o corriente eléctrica. En esas condiciones, al no presentar conductividad eléctrica alguna, se comportan de forma similar a un material aislante. Incremento de la conductividad en un elemento semiconductor La mayor o menor conductividad eléctrica que pueden presentar los materiales semiconductores depende en gran medida de su temperatura interna. En el caso de los metales, a medida que la temperatura aumenta, la resistencia al paso de la corriente también aumenta, disminuyendo la conductividad. Todo lo contrario ocurre con los elementos semiconductores, pues mientras su temperatura aumenta, la conductividad también aumenta. En resumen, la conductividad de un elemento semiconductor se puede variar aplicando uno de los siguientes métodos: Elevación de su temperatura Introducción de impurezas (dopaje) dentro de su estructura cristalina Incrementando la iluminación. Con relación a este último punto, algunos tipos de semiconductores, como las resistencias dependientes de la luz (LDR – Light-dependant resistors), varían su conductividad de acuerdo con la cantidad de luz que reciben. SEMICONDUCTORES "INTRÍNSECOS" Los materiales semiconductores, según su pureza, se clasifican de la siguiente forma: 1. Intrínsecos 2. Extrínsecos Se dice que un semiconductor es “intrínseco” cuando se encuentra en estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro de su estructura. En ese caso, la cantidad de huecos que dejan los electrones en la banda de valencia al atravesar la banda prohibida será igual a la cantidad de electrones libres que se encuentran presentes en la banda de conducción. Cuando se eleva la temperatura de la red cristalina de un elemento semiconductor intrínseco, algunos de los enlaces covalentes se rompen y varios electrones pertenecientes a la banda de valencia se liberan de la atracción que ejerce el núcleo del átomo sobre los mismos. Esos electrones libres saltan a la banda de conducción y allí funcionan como “electrones de conducción”, pudiéndose desplazar libremente de un átomo a otro dentro de la propia estructura cristalina, siempre que el elemento semiconductor se estimule con el paso de una corriente eléctrica. Como se puede observar en la ilustración, en el caso de los semiconductores el espacio correspondiente a la banda prohibida es mucho más estrecho en comparación con los materiales aislantes. La energía de salto de banda (Eg) requerida por los electrones para saltar de la banda de valencia a la de conducción es de 1 eV aproximadamente. En los semiconductores de silicio (Si), la energía de salto de banda requerida por los electrones es de 1,21 eV, mientras que en los de germanio (Ge) es de 0,785 eV. Estructura cristalina de un semiconductor intrínseco, compuesta solamente por átomos de silicio (Si) que forman una celosía. Como se puede observar en la ilustración, los átomos de silicio (que sólo poseen cuatro electrones en la última órbita o banda de valencia), se unen formando enlaces covalente para completar ocho electrones y crear así un cuerpo sólido semiconductor. En esas condiciones el cristal de silicio se comportará igual que si fuera un cuerpo aislante. SEMICONDUCTORES "EXTRÍNSECOS" Cuando a la estructura molecular cristalina del silicio o del germanio se le introduce cierta alteración, esos elementos semiconductores permiten el paso de la corriente eléctrica por su cuerpo en una sola dirección. Para hacer posible, la estructura molecular del semiconductor se dopa mezclando los átomos de silicio o de germanio con pequeñas cantidades de átomos de otros elementos o "impurezas". Generalmente los átomos de las “impurezas” corresponden también a elementos semiconductores que, en lugar de cuatro, poseen tres electrones en su última órbita [como el galio (Ga) o el indio (In)], o que poseen cinco electrones también en su última órbita [como el antimonio (Sb) o el arsénico (As)]. Una vez dopados, el silicio o el germanio se convierten en semiconductores “extrínsecos” y serán capaces de conducir la corriente eléctrica. En la actualidad el elemento más utilizado para fabricar semiconductores para el uso de la industria electrónica es el cristal de silicio (Si) por ser un componente relativamente barato de obtener. La materia prima empleada para fabricar cristales semiconductores de silicio es la arena, uno de los materiales más abundantes en la naturaleza. En su forma industrial primaria el cristal de silicio tiene la forma de una oblea de muy poco grosor (entre 0,20 y 0,25 mm aproximadamente), pulida como un espejo. A la izquierda se muestra la ilustración de una oblea (wafer) o cristal semiconductor de. silicio pulida con brillo de espejo, destinada a la fabricación de transistores y circuitos. integrados. A la derecha aparece la cuarta parte de la oblea conteniendo cientos de. minúsculos dados o “chips”, que se pueden obtener de cada una. Esos chips son los. que después de pasar por un proceso tecnológico apropiado se convertirán en. transistores o circuitos integrados. Una vez que los chips se han convertido en. transistores o circuitos integrados serán desprendidos de la oblea y colocados dentro. de una cápsula protectora con sus correspondientes conectores externos. El segundo elemento también utilizado como semiconductor, pero en menor proporción que el silicio, es el cristal de germanio (Ge). Durante mucho tiempo se empleó también el selenio (S) para fabricar diodos semiconductores en forma de placas rectangulares, que combinadas y montadas en una especie de eje se empleaban para rectificar la corriente alterna y convertirla en directa. Hoy en día, además del silicio y el germanio, se emplean también combinaciones de otros elementos semiconductores presentes en la Tabla Periódica. Placa individual de 2 x 2 cm de área, correspondiente a un antiguo diodo de selenio Entre esas combinaciones se encuentra la formada por el galio (Ga) y el arsénico (As) utilizada para obtener arseniuro de galio (GaAs), material destinado a la fabricación de diodos láser empleados como dispositivos de lectura en CDs de audio. En el caso del silicio (Si) y el germanio (Ge) cuando se encuentran en estado puro, es decir, como elementos intrínsecos, los electrones de su última órbita tienden a unirse formando "enlaces covalentes", para adoptar una estructura cristalina. Los átomos de cualquier elemento, independientemente de la cantidad de electrones que contengan en su última órbita, tratan siempre de completarla con un máximo de ocho, ya sea donándolos o aceptándolos, según el número de valencia que le corresponda a cada átomo en específico. Con respecto a los elementos semiconductores, que poseen sólo cuatro electrones en su última órbita, sus átomos tienden a agruparse formando enlaces covalentes, compartiendo entre sí los cuatro electrones que cada uno posee, según la tendencia de completar ocho en su órbita externa. Al agruparse de esa forma para crear un cuerpo sólido, los átomos del elemento semiconductor adquieren una estructura cristalina, semejante a una celosía. En su estado puro, como ya se mencionó anteriormente, esa estructura no conduce la electricidad, por lo que esos cuerpos semiconductores se comportan como aislantes. CONVERSIÓN DEL SILICIO EN SEMICONDUCTOR "TIPO-N" O EN "TIPO-P" Tanto los cristales de silicio (Si) como los de germanio (Ge) en estado puro se pueden convertir en dispositivos semiconductores, capaces de conducir la corriente eléctrica si para ello alteramos su estructura molecular cristalina introduciendo ciertas cantidades de "impurezas". Para realizar ese cambio será necesario introducir átomos de otros elementos semiconductores apropiados que posean tres electrones en su banda de valencia o última órbita (átomos trivalentes) o también cinco electrones en esa propia órbita (átomos pentavalentes). A tales efectos se consideran impurezas los siguientes elementos con átomos trivalentes: aluminio (Al), galio (Ga) e indio (In). También se consideran impurezas los átomos pentavalentes de arsénico (As), fósforo (P) o de antimonio (Sb). Cuando añadimos a la estructura cristalina del silicio o del germanio una pequeña cantidad de átomos de un elemento pentavalente en función de “impurezas”, estos átomos adicionales reciben el nombre de "donantes", porque cada uno dona o cede uno de sus cinco electrones a la estructura cristalina del semiconductor. Si, por el contrario, los átomos que se añaden como impurezas son trivalentes, se denominan entonces "aceptantes”, porque cada uno tendrá que captar o aceptar un electrón procedente de la propia estructura cristalina del silicio o del germanio. La conductividad que presente finalmente un semiconductor “dopado” dependerá de la cantidad de impurezas que contenga en su estructura cristalina. Generalmente para una proporción de un átomo de impureza que se añade por cada 100 millones de átomos del elemento semiconductor, la conductividad aumenta en 16 veces. SEMICONDUCTOR DE SILICIO "TIPO-N" Como ya conocemos, ni los átomos de silicio, ni los de germanio en su forma cristalina ceden ni aceptan electrones en su última órbita; por tanto, no permiten la circulación de la corriente eléctrica, por tanto, se comportan como materiales aislantes. Pero si la estructura cristalina de uno de esos elementos semiconductores la dopamos añadiéndole una pequeña cantidad de impurezas provenientes de átomos de un metaloide como, por ejemplo, antimonio (Sb) (elemento perteneciente los elementos semiconductores del Grupo Va de la Tabla Periódica, con cinco electrones en su última órbita o banda de valencia), estos átomos se integrarán a la estructura del silicio y compartirán cuatro de sus cinco electrones con otros cuatro pertenecientes a los átomos de silicio o de germanio, mientras que el quinto electrón restante del antimonio, al quedar liberado, se podrá mover libremente dentro de toda la estructura cristalina. De esa forma se crea un semiconductor extrínseco tipo-N, o negativo, debido al exceso de electrones libres existentes dentro de la estructura cristalina del material semiconductor. Estructura cristalina compuesta por átomos de silicio (Si) formando una celosía. Como se puede observar, esta estructura se ha dopado añadiendo átomos de antimonio (Sb) para crear un material semiconductor “extrínseco”. Los átomos de silicio (con cuatro electrones en la última órbita o banda de valencia) se unen formando enlaces covalentes con los átomos de antimonio (con cinco en su última órbita banda de valencia). En esa unión quedará un electrón libre dentro de la estructura cristalina del silicio por cada átomo de antimonio que se haya añadido. De esa forma el cristal. de silicio se convierte en material semiconductor tipo-N (negativo) debido al exceso electrones libres con cargas negativas presentes en esa estructura. Si a un semiconductor tipo-N le aplicamos una diferencia de potencial o corriente eléctrica en sus extremos, los electrones libres portadores de cargas negativas contenidos en la sustancia impura aumentan. Bajo esas condiciones es posible establecer un flujo de corriente electrónica a través de la estructura cristalina del semiconductor si le aplicamos una diferencia de potencia o corriente eléctrica. No obstante, la posibilidad de que al aplicárseles una corriente eléctrica los electrones se puedan mover libremente a través de la estructura atómica de un elemento semiconductor es mucho más limitada que cuando la corriente fluye por un cuerpo metálico buen conductor. SEMICONDUCTOR DE SILICIO "TIPO-P" Si en lugar de introducir átomos pentavalentes al cristal de silicio o de germanio lo dopamos añadiéndoles átomos o impurezas trivalentes como de galio (Ga) (elemento perteneciente al Grupo IIIa de la Tabla Periódica con tres electrones en su última órbita o banda de valencia), al unirse esa impureza en enlace covalente con los átomos de silicio quedará un hueco o agujero, debido a que faltará un electrón en cada uno de sus átomos para completar los ocho en su última órbita. En este caso, el átomo de galio tendrá que captar los electrones faltantes, que normalmente los aportarán los átomos de silicio, como una forma de compensar las cargas eléctricas. De esa forma el material adquiere propiedades conductoras y se convierte en un semiconductor extrínseco dopado tipo-P (positivo), o aceptante, debido al exceso de cargas positivas que provoca la falta de electrones en los huecos o agujeros que quedan en su estructura cristalina. Estructura cristalina compuesta por átomos de silicio (Si). que forman, como en el caso anterior, una celosía, dopada. ahora con átomos de galio (Ga) para formar un. semiconductor “extrínseco”. Como se puede observar en. la. ilustración, los átomos de silicio (con cuatro electrones en. la. última órbita o banda de valencia) se unen formando. enlaces covalente con los átomos de galio (con tres. electrones en su banda de valencia). En esas condiciones. quedará un hueco con defecto de electrones en la. estructura. cristalina de silicio, convirtiéndolo en un. semiconductor tipo-P (positivo) provocado por el defecto de. electrones en la estructura.