• Aprenderly
  • Explore
    • Ciencia
    • Ciencias sociales
    • Historia
    • Ingeniería
    • Matemáticas
    • Negocio
    • Numeración de las artes

    Top subcategories

    • Advanced Math
    • Estadísticas y Probabilidades
    • Geometría
    • Trigonometry
    • Álgebra
    • other →

    Top subcategories

    • Astronomía
    • Biología
    • Ciencias ambientales
    • Ciencias de la Tierra
    • Física
    • Medicina
    • Química
    • other →

    Top subcategories

    • Antropología
    • Psicología
    • Sociología
    • other →

    Top subcategories

    • Economía
    • other →

    Top subcategories

    • Ciencias de la computación
    • Diseño web
    • Ingeniería eléctrica
    • other →

    Top subcategories

    • Arquitectura
    • Artes escénicas
    • Ciencias de la religión
    • Comunicación
    • Escritura
    • Filosofía
    • Música
    • other →

    Top subcategories

    • Edad Antigua
    • Historia de Europa
    • Historia de los Estados Unidos de América
    • Historia universal
    • other →
 
Sign in Sign up
Upload
Microscopio STM
Microscopio STM

Microscopio de Efecto Túnel
Microscopio de Efecto Túnel

CAPÍTULO 5 5.1. Dada la densidad de corriente J = −104[sen(2x)e
CAPÍTULO 5 5.1. Dada la densidad de corriente J = −104[sen(2x)e

probabilidad energía
probabilidad energía

Laboratorio de Microscopia de Sonda Local en altos campos
Laboratorio de Microscopia de Sonda Local en altos campos

Emisión de Campo Cuando ocurre emisión de campo, los
Emisión de Campo Cuando ocurre emisión de campo, los

Microscopía de Fuerza Atómica (AFM)
Microscopía de Fuerza Atómica (AFM)

Asig1_3105_Spr05
Asig1_3105_Spr05

Emisión por Campo de Electrones desde Arreglos Nanométricos
Emisión por Campo de Electrones desde Arreglos Nanométricos

Microscopía de sonda local (SPM) en condiciones ambientales
Microscopía de sonda local (SPM) en condiciones ambientales

GS Específica Opc 3 Física 2014
GS Específica Opc 3 Física 2014

1

Microscopio de efecto túnel



Un microscopio de efecto túnel (en inglés: Scanning tunneling microscope o STM) es un instrumento para tomar imágenes de superficies a nivel atómico. Su desarrollo en 1981 hizo ganar a sus inventores, Gerd Binnig y Heinrich Rohrer (de IBM Zürich), el Premio Nobel de Física en 1986. Para un STM, se considera que una buena resolución es 0.1 nm de resolución lateral y 0.01 nm de resolución de profundidad. Con esta resolución, los átomos individuales dentro de los materiales son rutinariamente visualizados y manipulados. El STM puede ser usado no solo en ultra alto vacío, sino que también en aire, agua, y varios otros líquidos o gases del ambiente, y a temperaturas que abarcan un rango desde casi cero Kelvin hasta unos pocos cientos de grados Celsius.El STM está basado en el concepto de efecto túnel. Cuando una punta conductora es colocada muy cerca de la superficie a ser examinada, una corriente de polarización (diferencia de voltaje) aplicada entre las dos puede permitir a los electrones pasar al otro lado mediante efecto túnel a través del vacío entre ellas. La resultante corriente de tunelización es una función de la posición de la punta, el voltaje aplicado y la densidad local de estados (LDOS por sus siglas en inglés) de la muestra. La información es adquirida monitoreando la corriente conforme la posición de la punta escanea a través de la superficie, y es usualmente desplegada en forma de imagen. La microscopía de efecto túnel puede ser una técnica desafiante, ya que requiere superficies extremadamente limpias y estables, puntas afiladas, excelente control de vibraciones, y electrónica sofisticada.
El centro de tesis, documentos, publicaciones y recursos educativos más amplio de la Red.
  • aprenderly.com © 2025
  • GDPR
  • Privacy
  • Terms
  • Report