Download estudio de causas de falla en variadores de frecuencia bajo

Document related concepts

Variador de frecuencia wikipedia , lookup

Variador de velocidad wikipedia , lookup

Transistor IGBT wikipedia , lookup

Motor Twin Spark wikipedia , lookup

Automóvil teledirigido wikipedia , lookup

Transcript
ESTUDIO DE CAUSAS DE FALLA EN VARIADORES DE FRECUENCIA BAJO AMBIENTES
INDUSTRIALES
HECTOR ADOLFO VELEZ
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE INGENIERIA
PROYECTO CURRICULAR DE INGENERÍA ELÉCTRICA
BOGOTÁ
2016
ESTUDIO DE CAUSAS DE FALLA EN VARIADORES DE FRECUENCIA BAJO AMBIENTES
INDUSTRIALES
HECTOR ADOLFO VELEZ
Informe pasantía
Director Interno
César Leonardo Trujillo Rodríguez
Profesor Facultad de Ingeniería
Universidad Distrital
Director Externo
Juan Carlos Molina Higuera
FLT and Contracts Team Leader
Rockwell Automation
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE INGENIERIA
PROYECTO CURRICULAR DE INGENERÍA ELÉCTRICA
BOGOTÁ
2016
INDICE
1.
INTRODUCCION ..................................................................................................................................................... 5
2.
ESTADO DE LA TECNICA ...................................................................................................................................... 6
3.
2.1.
RECTIFICADOR DE 6 PULSOS ....................................................................................................... 7
2.2.
RECTIFICADOR DE 18 PULSOS ..................................................................................................... 8
2.3.
RECTIFICADOR PWM ...................................................................................................................... 9
2.4.
TOPOLOGIAS DE INVERSORES .................................................................................................. 10
2.5.
SISTEMAS DE MONTAJE .............................................................................................................. 10
2.6.
TECNICAS DE CONTROL EN VARIADORES DE FRECUENCIA ................................................. 11
2.6.1.
VOLTIOS/HERTZ ............................................................................................................................ 11
2.6.2.
VECTOR DE FLUJO ....................................................................................................................... 11
2.7.
INTERFAZ HUMANO MAQUINA .................................................................................................... 12
2.8.
APLICACIONES DE LOS VARIADORES DE FRECUENCIA ......................................................... 13
DESARROLLO DEL ESTUDIO .............................................................................................................................. 15
3.1.
MUESTRA ESTUDIADA ................................................................................................................. 15
3.2.
PROBLEMAS EN LA CALIDAD DE ENERGIA ............................................................................... 16
3.3.
PROBLEMAS DE FALLA A TIERRA............................................................................................... 18
3.3.1.
COMO DIAGNOSTICAR UNA FALLA A TIERRA ........................................................................... 18
3.3.2.
QUE PUEDE CAUSAR UNA FALLA A TIERRA ............................................................................. 18
3.3.3.
CASOS ESTUDIADOS DE FALLA A TIERRA ................................................................................ 20
3.4.
SUBTENSIONES (FALLA DE BAJO VOLTAJE)............................................................................. 23
3.4.1.
CASOS ESTUDIADOS DE SUBTENSIONES ................................................................................ 24
3.5.
SOBRETENSIONES ....................................................................................................................... 27
3.5.1.
SOBRETENSIONES TRANSITORIAS A LA SALIDA DEL INVERSOR (dv/dt) .............................. 27
3.5.2.
RESISTENCIAS DE FRENADO...................................................................................................... 28
3.5.3.
CASOS ESTUDIADOS DE SOBRETENSION ................................................................................ 28
3.6.
PROBLEMAS EN LOS COMPONENTES ELECTRONICOS DE POTENCIA ................................ 30
3.6.1.
PRUEBAS EN SGCT ...................................................................................................................... 30
3.6.2.
PRUEBAS EN SCR ......................................................................................................................... 31
3.6.3.
CASOS ESTUDIADOS DE PROBLEMAS EN LOS ELEMENTOS ELECTRONICOS DE
POTENCIA ...................................................................................................................................................... 32
3.7.
ARMONICOS .................................................................................................................................. 33
3.8.
PROBLEMAS EN LA CONFIGURACION DEL DRIVE ................................................................... 33
3.8.1.
CONFIGURACION DEL TORQUE.................................................................................................. 33
3.8.2.
CONFIGURACION DEL TIEMPO DE ARRANQUE ........................................................................ 35
3
4.
3.8.3.
DRIVE FUNCIONANDO EN MODO SENSORLESS ...................................................................... 36
3.8.4.
AUTOTUNE ..................................................................................................................................... 36
3.8.5.
CASOS ESTUDIADOS DE PROBLEMAS EN LA CONFIGURACION DEL DRIVE ....................... 37
3.9.
PROBLEMAS DE CONTAMINACION ............................................................................................ 38
3.10.
CASOS ESTUDIADOS DE PROBLEMAS DE CONTAMINACION ................................................. 38
3.11.
PUESTA A TIERRA EN VARIADORES DE FRECUENCIA............................................................ 39
3.12.
TABLA RESUMEN .......................................................................................................................... 40
PASOS PARA DIAGNOSTICAR UNA FALLA ..................................................................................................... 42
4.1.
BUCKUP DE LOS PARAMETROS DEL DRIVE E INSPECCION MECANICA. ............................. 42
4.2.
INSPECCION DEL CABLEADO DEL MOTOR ............................................................................... 44
4.3.
INSPECCION DE CABLEADO Y TERMINALES ............................................................................ 45
4.4.
INSPECCION DE LAS TARJETAS Y CONEXIONES DEL DRIVE................................................. 47
4.5.
REVISION DEL CODIGO DE FALLA DEL DRIVE Y DE LOS VALORES
RECOMENDADOS
POR EL FABRICANTE. .................................................................................................................................. 49
4.6.
PASOS A SEGUIR EN CASO DE RUIDO ELECTRICO................................................................. 50
5.
CONCLUSIONES ................................................................................................................................................... 51
6.
REFERENCIAS ...................................................................................................................................................... 52
4
1. INTRODUCCION
El rápido incremento en la utilización de nuevas tecnologías y técnicas de
automatización en la industria ha traído consigo efectos en la cadena de producción
y manufactura así como cambios en la red eléctrica, una de las grandes migraciones
tecnológicas industriales de los últimos años está basada en el uso de variadores de
frecuencia para el control de motores eléctricos, sus aplicaciones abarcan bombas,
ventiladores, compresores, cintas trasportadoras, actuadores entre otros,
volviéndose dispositivos indispensables para asegurar la continuidad de los
procesos de fabricación [1].
Los Diseñadores, ingenieros de mantenimiento y administradores de las plantas
deben tener en cuenta la sensibilidad de estos equipos a los disturbios de la calidad
de la energía eléctrica y como estos problemas interactúan con los procesos que se
llevan a cabo en sus plantas. Así, las fallas en los variadores de frecuencia resultan
en paradas de planta, perdidas en la producción, desperdicio de material e
intervenciones manuales y retrasos que se traducen en pérdidas económicas para
las empresas manufactureras. Entre los disturbios del suministro de energía se
encuentran las sobretensiones, subtensiones, transitorios, interrupciones, distorsión
armónica y ruido [2] que pueden afectar seriamente el funcionamiento de los
equipos.
En el presente trabajo se determinan las causas más comunes por las cuales los
variadores de frecuencia fallan desde el punto de vista de la calidad de la energía
eléctrica, todo esto con los siguientes objetivos:
 plantear posibles causas de mal funcionamiento en los variadores de
frecuencia.
 identificar los fallos recurrentes mediante el análisis de casos de estudio.
 Formular soluciones preventivas a las fallas presentes en dichos
dispositivos.
 encontrar estrategias para la solución de problemas.
 abordar los inconvenientes típicos causados por mala instalación y
configuración de variadores de frecuencia.
5
2. ESTADO DE LA TECNICA
Un Variador de Frecuencia (VDF) es un dispositivo eléctrico de alta eficiencia capaz
de proveer el ajuste continuo de la velocidad en aplicaciones con motores eléctricos
en baja y media tensión. Los dos elementos básicos que lo componen son el
controlador de frecuencia ajustable, y la estación de control para la entrada de
parámetros por parte del operador, en la figura 1, se presenta un variador de
frecuencia de media tensión [3].
Figura 1) variador de frecuencia de media tensión
El controlador de frecuencia ajustable es la unidad de conversión de potencia
basado en elementos de estado sólido la cual recibe un voltaje trifásico a 60 Hz y
provee potencia al motor con frecuencia variable, además de regular la salida de
voltaje para mantener una relación constante de voltios/hertz y así proporcionar un
torque constante.
Los principales componentes del controlador de frecuencia ajustable son el
rectificador y el inversor. La función del rectificador es convertir la entrada de voltaje
sinusoidal a un voltaje DC y así eliminar la componente de 60 Hz, y la función del
inversor es generar un voltaje de frecuencia graduable, para variadores de
frecuencia de media tensión se usan GTOs como elementos interruptores e IGBTs
para variadores de baja tensión.
Entre los diferentes rectificadores usados en variadores de frecuencia se encuentran
los de 6, 12,18 pulsos y los de tecnología PWM [4], dependiendo del requerimiento
de la instalación en la que será instalado el variador de frecuencia puede ser usada
una u otra topología, algunas de las topologías se muestran a continuación:
6
2.1.
RECTIFICADOR DE 6 PULSOS
En la figura 2 se muestra un rectificador de 6 pulsos
Figura 2) Rectificador de 6 pulsos
El rectificador de 6 pulsos puede ser usado con un transformador de aislamiento o
con reactores de línea y es recomendado su uso con filtros a la entrada para reducir
el nivel de THD de corriente y de voltaje.
7
2.2.
RECTIFICADOR DE 18 PULSOS
En la figura 3 se muestra un rectificador de 18 pulsos
Figura 3) Rectificador de 18 pulsos
Con esta topología, en la mayoría de los casos no es necesario el uso de filtros para
reducir el nivel de distorsión total harmónica (THD) de voltaje y corriente, en este
tipo de rectificador se usa un transformador con 9 fases en el secundario, cada una
desfasada 20 grados para una baja entrada de armónicos.
8
2.3.
RECTIFICADOR PWM
En la figura 4 se muestra un rectificador PWM
Figura 4) Rectificador PWM
Conocido también como rectificador de frente activo (AFE), elimina la necesidad de
usar transformadores de múltiples devanados para mitigar los armónicos.
En esta topología se usan como interruptores GTOs en variadores de frecuencia de
media tensión e IGBTs para Variadores de baja tensión.
9
2.4.
TOPOLOGIAS DE INVERSORES
Para los inversores siempre se usa PWM con filtro capacitivo a la salida para la
eliminación de armónicos como se muestra en las figuras 2,3 Y 4.
2.5.
SISTEMAS DE MONTAJE
Para albergar los componentes electrónicos de potencia los Variadores de
Frecuencia PowerFlex cuentan con una tecnología que permite el fácil acceso y
reemplazo de componentes dañados sin necesidad de herramientas especiales,
estas “cajas” llamadas PowerCage, hechas de resina epoxica (Figura 5) contienen
los disipadores, los componentes Snubber , los SCR (rectificador controlado de
silicio) o GTO (Gate Turn-Off Thyristor) y los circuitos de gate del variador de
Frecuencia.
Figura 5) PowerCage
En variadores PowerFlex de media tensión los GTO vienen integrados al circuito de
disparo, lo que ofrece ventajas tales como caminos de baja inductancia y pérdidas
de energía reducida en los circuitos de disparo con una tasa baja de fallas, en la
Figura 6 se muestra uno de estos dispositivos.
10
Figura 6) Tarjeta GTO con circuito integrado de disparo
2.6.
TECNICAS DE CONTROL EN VARIADORES DE FRECUENCIA
2.6.1. VOLTIOS/HERTZ
Es la técnica de control básica en variadores de frecuencia y el núcleo de los
sistemas de control más complejos usados en drives, se basa en la relación entre el
voltaje y la frecuencia para controlar la velocidad y el torque, y es usado en
aplicaciones en las cuales la carga no varía rápidamente.
Esta técnica de control se utiliza en lazo abierto sin dispositivos de realimentación y
permite al motor trabajar en su torque nominal dentro de cierto rango de frecuencias
especificado por los fabricantes de drives.
El principio de funcionamiento de este sistema de control se basa en mantener el
flujo magnético constante, a través de la relación antes mencionada aunque solo
sea una aproximación.
2.6.2. VECTOR DE FLUJO
Esta técnica de control retiene como núcleo la relación de Volts/Hertz pero son
adicionados algunos bloques para mejorar el rendimiento del drive. Son utilizados
elementos de realimentación para obtener valores precisos de velocidad y torque, y
adicionalmente, es controlada la cantidad de corriente dirigida al flujo del motor a
través de un lazo de tensión. En la Figura 7 se muestran los bloques de control que
componen esta técnica de control.
En el diagrama de la Figura 7 el estimador de corriente estima las corrientes de flujo
y torque en el motor para los otros bloques de control del drive. El ángulo del voltaje
controla la cantidad de la corriente que va al flujo del motor usando como
11
realimentación la corriente estimada de torque y los parámetros del motor arrojados
durante el Auto tune.
Figura 7) sistema de control vector de flujo
2.7.
INTERFAZ HUMANO MAQUINA
La estación de control contiene el interfaz humano máquina y está compuesta de
botones, potenciómetros y pantallas que pueden o no estar ubicadas en el frente del
equipo o en un lugar remoto alejado del variador de frecuencia el cual permite al
operador seleccionar los parámetros de operación deseados [5, 6, 7], en la figura 8a
y 8b se muestran diferentes tipos de interfaz.
12
Figura 8a) Interfaz humano maquina Drive MV
2.8.
Figura 8b) Interfaz humano maquina Drive LV
APLICACIONES DE LOS VARIADORES DE FRECUENCIA
Los variadores de frecuencia pueden ser utilizados en una amplia cantidad de
procesos en los cuales no solo se pueden controlar la velocidad sino que
adicionalmente, se pueden obtener ahorros energéticos considerables.
Dentro de las cargas que son alimentadas para el control del flujo, se encuentran las
bomba (Figura 9), ventiladores, sopladores y compresores, las cuales tienen
requerimientos de flujo que Oscilan, siendo así necesarios dispositivos externos
para ajustar los valores a los deseados, dentro de los elementos utilizados para tal
fin se encuentran las válvulas, amortiguadores de salida, alabes de entrada y
difusores; todos estos son elementos mecánicos restrictivos, los cuales desperdician
energía disipando la potencia por fricción y difusión de calor. El uso de los
variadores de frecuencia en lugar de los métodos tradicionales (Figura 10), ofrece la
oportunidad de incrementar el tiempo del ciclo de vida de los equipos y la reducción
de la energía consumida [8, 9].
Figura 9) Bombas.
13
Figura 10) Tablero con variadores de frecuencia.
Otra de las grandes ventajas que tiene el uso de los variadores de frecuencia se
encuentra en la capacidad de usar equipos en paralelo, los cuales pueden trabajar
por debajo de su capacidad nominal dependiendo de la demanda, alimentados por
un único variador, lo cual puede significar grandes ahorros energéticos con respecto
al uso de un solo equipo trabajando de manera On/Off [10].
Los Variadores de Frecuencia (VFD) desempeñan un papel protagónico en los
procesos de la industria, y por ello es necesario garantizar la operación continua y
confiable de los equipos para evitar tiempos inoperantes que suponen grandes
costos para los productores.
14
3. DESARROLLO DEL ESTUDIO
Como propósito fundamental de este trabajo, se encuentra la identificación de
causas que originan el mal funcionamiento en variadores de frecuencia y el
planteamiento de las posibles medidas para la prevención y solución de problemas
en estos dispositivos. Este es un estudio descriptivo donde como primera etapa se
recolectaron informes de casos de mantenimiento, en situaciones en las que se han
presentado fallas, así, se recolectaron los datos sobre diferentes aspectos y
condiciones de operación que tras un análisis de condiciones y síntomas, arrojaron
las posibles causas que reinciden con mayor frecuencia cuando estos equipos
comienzan a presentar anomalías en su funcionamiento.
3.1.
MUESTRA ESTUDIADA
Se recopilo información de más de 20 casos en los cuales los variadores de
frecuencia presentaban una falla en su funcionamiento, la muestra incluye Drives
instalados en las principales industrias que funcionan en el país (Oil & Gas, Papel,
Alimentos, Acero y Cementos) los resultados de las causas principales de falla de
este estudio se muestran en la imagen a continuación (Figura 11).
Figura 11) Causas de fallas encontradas en el estudio.
15
En la Figura 11, se puede observar que las principales causas de falla en los
variadores de frecuencia son las debidas a los disturbios en el suministro de
energía, seguido por los problemas de falla a tierra y los problemas de configuración
del drive.
Por este motivo este estudio se concentra en los tipos de falla ocasionados por
estos disturbios y los métodos para mitigar sus efectos, adicionalmente se exponen
los principales problemas de configuración y las prácticas adecuadas a la hora de
reconfigurar el drive.
3.2.
PROBLEMAS EN LA CALIDAD DE ENERGIA
En la tabla 1 se muestran los principales disturbios del suministro de energía
eléctrica según la IEEE 1159:
16
Categorias
1.1 Impulsivo
Nanosegundo
Microsegundo
Milisegundo
1.Transitorios
1.2 Oscilatorio
Baja frecuencia
Frecuencias medias
Altas Frecuencias
Contenido tipico espectral Duracion Tipica Tipica Magnitud del Voltaje
Elevaciones de 5 ns
Elevaciones de 1 us
elevaciones de 0.1 ms
<50 ns
50 ns - 1 ms
> 1 ms
< 5 KHz
5 - 500 KHz
0.5 - 5 MHz
0-4 pu
0-8 pu
0-4 pu
2.1 Instantaneo
Interrupcion
Sag
Swell
0.5-30 Ciclos
0.5-30 Ciclos
0.5-30 Ciclos
<0.1 pu
0.1-0.9 pu
1.1-1.8 pu
0.5 Ciclos - 3 s
30 Ciclos - 3 s
30 Ciclos - 3 s
<0.1 pu
0.1-0.9 pu
1.1-1.4 pu
3s-1 min
3s-1 min
3s-1 min
<0.1 pu
0.1-0.9 pu
1.1-1.2 pu
3.1 Interrupcion
Sostenida
>1 min
0 pu
3.2 Subvoltaje
3.3 Sobrevoltaje
>1 min
>1 min
0.8-0.9 pu
1.1-1.2 pu
2.Variaciones 2.2 Momentaneo
de Corta
Interrupcion
duracion
Sag
Swell
2.3 Temporal
Interrupcion
Sag
Swell
3.Variaciones
de Larga
Duracion
4.Desbalance
de Voltaje
Estado Estable
5.1 DC Offset
5.Distorcion
de la Forma 5.2 Armonicos
de Onda
5.3 Interarmonicos
5.4 Notching
5.5 Noise
6.Fluctuacion
es de Voltaje
7.Variaciones
de la
frecuencia
Electrica
0.5-2 %
Estado Estable
0-0.1 %
0-20%
0-2%
ancho de banda
Estado Estable
Estado Estable
Estado Estable
Estado Estable
<25 Hz
Intermitente
0.1-7 pu
0-100 th
0 - 6 KHz
0-1%
<10 s
Tabla 1) Disturbios en la calidad de la energía eléctrica según IEEE 1159.
Los variadores de frecuencia son equipos eléctricos susceptibles a los problemas
resumidos en la tabla, muchos de los cuales pueden ser la causa de mal
funcionamiento en estos dispositivos, a continuación se muestran casos de fallas en
variadores de frecuencia debido a problemas en la calidad de la energía eléctrica.
17
3.3.
PROBLEMAS DE FALLA A TIERRA
Una falla a tierra es detectada en el Drive cuando la suma de la corriente de las tres
fases al motor esta fuera del rango del drive [11].
3.3.1. COMO DIAGNOSTICAR UNA FALLA A TIERRA
La prueba que se realiza en el Drive para diagnosticar la falla sigue el procedimiento
a continuación:
1) Desconectar los cables del motor en la caja de conexiones del motor.
2) Aislar los cables del motor en la caja de conexiones del motor.
3) Poner en funcionamiento el Drive para ver si persiste el fallo.
 Si el Drive no arroja más fallas, es porque el problema está en el motor o en
la caja de conexiones del motor. Se debe reemplazar el motor o proporcionar
un mayor aislamiento en los cables del motor.
 Si la falla persiste con el motor desconectado en la caja de conexiones del
motor, el problema podría estar en los cables entre el Drive y el motor o en el
Drive.
4) Desconectar los cables del motor en las terminales del Drive y poner en
funcionamiento el Drive.
 Si la falla persiste con los cables del motor desconectados del Drive, el Drive
necesita ser reparado o reemplazado.
 Si la falla no aparece, el problema está en los cables entre el motor y el drive
y deben ser reemplazados.
3.3.2. QUE PUEDE CAUSAR UNA FALLA A TIERRA
Son varias las razones por las cuales un Drive puede presentar una falla a tierra, en
general cualquier conductor del Drive que este en contacto con la tierra del sistema,
ya sea en los devanados del motor, en los cables de alimentación del sistema o
dentro del variador de frecuencia, pueden ocasionar una falla a tierra, las principales
circunstancias en las que se genera esta falla son las siguientes:
18





Cortocircuito a tierra en el motor.
Mal funcionamiento en los sensores de realimentación del Drive (CT's).
Mala conexión de los CT's a la tarjeta de interface de potencia.
Mal cableado desde el CT y la tarjeta de interface de potencia.
Ruido causado por los relés del circuito de control auxiliar de encendido y
apagado.
Los pasos para identificar la Falla a tierra en cualquiera de estos casos es la
siguiente:
Cortocircuito a tierra en el motor.
Para esto es necesario utilizar un medidor de aislamiento o Megger.
 Medir con un Megger los cables del motor a tierra.
 Verificar el nivel de aislamiento del motor para ver si concuerda con el índice
de aislamiento del inversor.
 Cables largos del motor, pueden resultar en fenómenos de onda reflejada
que a su vez puede causar la ruptura prematura del aislamiento si el
aislamiento del motor no está debidamente clasificado para uso con
Variadores de frecuencia.
Revisión de mal funcionamiento en los sensores de realimentación del Drive (CT's).
 Desconectar los cables de alimentación del motor que van al drive y arrancar
el drive, luego de verificar, este aun continua reportando la falla a tierra.
 desconectar los CT's uno a la vez para determinar cuál CT está mal.
Revisión de una mala conexión al CT o a la tarjeta de interface de potencia.
 Desconectar y volver a conectar para ver si la falla desaparece.
Mal cableado desde el CT y la tarjeta de interface de potencia.
 Hay bordes de hoja de metal afilados y los cables pueden raspar contra esos
bordes y causar corto con el metal.
19
Ruido causado por los relés del circuito de control auxiliar de encendido y apagado.
 Un relé que opera a 120 VAC cuando acciona puede causar un fallo a tierra.
 Asegurar que el cableado del relé está separado de los cables de baja
tensión.
 Tratar de añadir un snubber a través de los relés de 120 VAC para reducir el
ruido.
3.3.3. CASOS ESTUDIADOS DE FALLA A TIERRA
A continuación serán presentados dos casos en los que se ocurre una falla a tierra,
en el primer caso, el origen de la falla es interno en el Drive y en el segundo la falla
se encuentra en el motor. En los dos casos se utiliza el método descrito
anteriormente para localizar la parte que está causando el problema, en los casos
de falla a tierra no se puede restablecer el funcionamiento del drive hasta que no se
borre la falla.
Caso A
Se Registra Falla a tierra, se procede de acuerdo al método descrito anteriormente
para diagnosticar la falla a tierra encontrándose un CT dañado el cual registraba la
falla a tierra (Figura 12 y 13).
Figura 12) Caso A, verificación de falla a tierra
20
Figura 13) Caso A, Desconexión de CT para verificación de buen funcionamiento.
Caso B
Se encuentra falla a tierra, se procede de acuerdo al método descrito anteriormente
para diagnosticar la falla encontrándose que el problema está fuera del drive y que
es necesario realizar pruebas de aislamiento al motor.
Adicionalmente, se procede a realizar el cambio del motor, luego de lo cual el
variador se comporta de manera normal sin registrar falla alguna (Figura 14,15 y
16).
21
Figura 14) Caso B, Falla a Tierra
Figura 15) Caso B, Verificación de CTs en el variador de frecuencia
Figura 16) Caso B, Verificación de las conexiones en la tarjeta de interface de potencia
22
3.4.
SUBTENSIONES (FALLA DE BAJO VOLTAJE)
De acuerdo al manual de falla, en variadores PowerFlex una falla por subtension se
presenta en el Drive cuando el valor de voltaje en el bus DC (parámetro 11 del
variador) o en la alimentación del Drive (Parametro 461) caen por debajo del valor
configurado (Tabla 2) [12].
Num. De
evento
4
Texto del
fallo/
alarma
Tipo
Bajo Voltaje Configurable
Accion del
fallo
Parametro de
Configuracion
P460 [Acc VoltInsuf]
Restableci
miento
automatico
Descrpcion/accion
S
Si el voltaje de bus, P11 [Volt Bus CC] cae por
debajo del valor establecido en P461 [Nivl
VoltInsuf] se produce una condicion de
voltaje insuficiente.
Tabla 2) Definición de falla por subtension, según el manual de fallas en variadores PowerFlex.
Esta falla puede originarse debido a un suministro de energía deficiente, sin
embargo, este parámetro es configurable dentro del Drive (Figura 17):
Figura 17) Configuración de parámetros en un VDF.
La protección contra subtensiones monitorea las 3 fases del suministro de energía y
también el voltaje en el Bus DC. Aunque esta falla no dañará el Drive, esta
protección es requerida para asegurar que los suministros de energía estén
operando dentro de las especificaciones requeridas, ya que si se pierde la
23
regulación de energía podrían presentarse problemas tales como estados
indeterminados, circuitos de disparo que no podrían asegurar el adecuado
encendido o apagado de los dispositivos de conmutación y mal funcionamiento de
los circuitos de control.
Como se puede observar en las imágenes anteriores, los parámetros de disparo de
esta protección pueden ser ajustados a un valor deseado, sin embargo inhibir o
poner valores muy bajos en estos parámetros tendrá como resultado una
disminución de la protección del drive.
3.4.1. CASOS ESTUDIADOS DE SUBTENSIONES
A continuación se muestran 2 casos en los que las fluctuaciones de voltaje generan
el disparo de la falla por subtensión, luego de ver el registro del variador de
frecuencia es posible observar que a diferentes horas del día se presentan las
caídas de tensión que generan la falla en los variadores, por este motivo se
recomienda instalar reactores a la entrada del variador que proporcionen una mejor
regulación de energía ante fluctuaciones de corta duración y adicionalmente se
cambia la configuran los parámetros del drive.
Caso A
Se observan fallas por voltaje insuficiente en los drives (Figura 18) de las bombas
de Oxigeno y se recomienda la instalación de reactores para evitar las fluctuaciones
de tensión y reducir los efectos de los posibles armónicos de la red.
Figura 18) Caso A, falla por subtensión
24
CASO B
Se presentan fluctuaciones de tensión que envían a falla el variador y no permiten
que se active la función de “arranque al vuelo” la cual permite re-conectar un motor
en movimiento cuando se emite un comando de arranque (Tabla 3).
Se deshabilitan las funciones del drive que disparan la falla por voltaje insuficiente y
por perdida de fase ya que se considera que las fluctuaciones son de pequeña
duración y magnitud como para afectar la funcionalidad del Drive (Figura 19), esto
con el fin de poder habilitar la función de “arranque al vuelo” (Figura 20).
Figura 19) Caso B, configuración de los parámetros de Falla por subtension, parámetros P460,
P461.
25
Modo Arranque Ligero
Modo Arranque Ligero
Habilita/Inhabilita la funcion que reconecta a un motor en movimiento a RPM reales,
0 = "Inhabilitado"
cuando se emite un comando de arranque. Funcional en todos los modos de control Opciones
1 = "Enhanced"
de motor.
Predeterminadas:
2 = "Sweep"
"Enhanced" (1) - Este modo avanzado realiza rapidamente la funcion de reconexion.
"Sweep" (2) - Este modo de barrido de frecuencia se usa con filtros senoidales de
salida.
Tabla 3) Definición del modo de Arranque al vuelo.
Figura 20) Caso B, Configuración de los parámetros de arranque al vuelo P345.
26
3.5.
SOBRETENSIONES
Los componentes eléctricos están expuestos a sufrir fallas ante sobretensiones, en
los drives se pueden presentar fallas por sobretensión bajo las siguientes
condiciones:
 Sobretensiones en el suministro de energía.
 Sobretensiones generadas por el comportamiento de un motor como
generador de inducción cuando trata de reducir la velocidad de una carga
con una alta inercia (frenado) demasiado rápido [13].
En los variadores de frecuencia modernos la mayoría de las sobretensiones ocurren
por una mala configuración del tiempo de la rampa de desaceleración de motores
con cargas de alta inercia. Si este tiempo es muy bajo comparado con el tiempo
natural de desaceleración de la carga, el motor se comportara como un generador
de inducción y transferirá la potencia al bus DC del variador de frecuencia con lo
cual pueden alcanzarse el valor de disparo por sobretensión.
3.5.1. SOBRETENSIONES TRANSITORIAS A LA SALIDA DEL INVERSOR (dv/dt)
Los inversores modernos utilizan dispositivos electrónicos de potencia tales como
IGBTs y GTOs los cuales conmutan a altas frecuencias para generar señales
aproximadas a una señal sinodal, sin embargo las variaciones de tensión a altas
frecuencias generan picos transitorios de voltaje, los cuales pueden agravarse en
los terminales del motor debido a la reflexión dela onda la cual depende en gran
manera en la longitud de los cables entre el motor y el Drive.
Estas sobretensiones pueden alcanzar picos de 2.5 veces el voltaje del bus DC del
variador de frecuencia y pueden ser lo suficientemente altos para dañar el
aislamiento de los motores, y los cables de potencia.
La amplitud de la onda reflejada depende del dispositivo de conmutación (IGBT,
GTO, MOSFET, etc), esto debido a que está relacionado con los tiempos de
levantamiento de los pulsos de tensión, y estos varían dependiendo de la tecnología
utilizada, entre más rápido sea el dispositivo, mayor pueden ser los picos que se
presenten, así mismo la longitud del cable juega un papel fundamental en la
magnitud de la onda reflejada y se recomiendan longitudes máximas del cable para
un funcionamiento seguro.
27
Una de las principales medidas para resistir la onda reflejada es el uso de motores
para aplicaciones con variadores de frecuencia, los cuales tienen un mayor nivel de
aislamiento, capaces de soportar picos de sobretensión.
Otra posible forma de mitigar los efectos de la onda reflejada es el uso de reactores
a la salida del inversor del drive el cual se opone a las fluctuaciones de corriente y
de tensión, estos reactores tienen como desventaja la disminución del factor de
potencia y la caída adicional de tensión.
Sin embargo existen otras opciones tales como los capacitores para sobretensiones
los cuales van acompañados de una resistencia para ayudar a descargar el
condensador rápidamente y prepararlo para la siguiente operación, estos van
conectados en los terminales del motor. También existen filtros especiales los
cuales representan un camino de alta impedancia para los voltajes de alta
frecuencia.
Al usar opciones de filtro en el inversor se recomienda no auto sintonizar (autotune)
debido a que con la adición de componentes LRC entre la salida del drive y el motor
cambia el modelo equivalente del circuito visto por el variador de frecuencia.
Adicionalmente por la misma razón el variador de frecuencia debe ser usado en
modo V/Hz[14].
3.5.2. RESISTENCIAS DE FRENADO
Cuando desacelera un motor, este se comporta como un generador, produciendo
energía, esta energía va de regreso al Drive y puede resultar en un incremento del
voltaje en el bus DC, si este llega a un valor muy alto puede dañar el variador de
frecuencia. Para poder disipar la energía producida por el motor, se utilizan
resistencias de frenado las cuales consumen la energía producida [15].
3.5.3. CASOS ESTUDIADOS DE SOBRETENSION
A continuación se muestra un caso donde el motor se comporta como un generador
provocando daños en los circuitos de pre-carga y en los componentes electrónicos
de potencia del variador los cuales deben ser cambiados.
Caso A
Se encuentra daños en la tarjeta de pre-carga, en el rectificador y el inversor, se
diagnostica una posible sobretensión que supero el voltaje de avalancha (Figura
21,22 y 23).
28
Figura 21) caso A, falla por sobretensión.
Figura 22) Caso A, daño en los circuitos de precarga en el variador de frecuencia.
29
Figura 23) Caso A, falla por sobretensión.
3.6.
PROBLEMAS EN LOS COMPONENTES ELECTRONICOS DE POTENCIA
3.6.1. PRUEBAS EN SGCT
Los siguientes pasos describen cómo verificar semiconductores SGCT y todos los
[19].componentes amortiguadores asociados (Figura 24).
Figura 24) Circuito de prueba en SGCT
30
Se realiza la comparación entre la lectura de resistencia y capacitancia de cada
elemento, con los valores de la siguiente tabla 4.
SGCT Rating
Sharing Resistor
Snubber Resistor
Snubber
Capacitor
1500 Amp
80 kΩ
6 Ω (PWMR) 
0.2 µf
1500 Amp
80 kΩ
7.5 Ω (Inverter)

0.2 µf
800 Amp
80 kΩ
10 Ω
0.1 µf
400 Amp
80 kΩ
15 Ω (PWMR)
0.1 µf
400 Amp
80 kΩ
17.5 Ω (Inverter)
0.1 µf
Tabla 4) Valores recomendados en SGCT
3.6.2. PRUEBAS EN SCR
Los pasos siguientes describen cómo verificar semiconductores SCR y todos los
componentes amortiguadores asociados (Figura 25).
Figura 25) Circuito de Prueba en SCR
31
Se realiza la comparación entre la lectura de resistencia y capacitancia de cada
elemento, con los valores de la Tabla 5:
SCR Rating
Sharing
Resistance
Snubber
Resistance
Snubber
Capacitance
350, 400, 815
Amp
80 kΩ
60 Ω
0.5 µf
Tabla 5) Valores recomendados en SCR
3.6.3. CASOS ESTUDIADOS DE PROBLEMAS EN LOS ELEMENTOS
ELECTRONICOS DE POTENCIA
A continuación se muestra un caso en el que el Drive entra en falla debido a un
posible daño en los SCR del rectificador. Los variadores de frecuencia cuentan con
un sistema de autodiagnóstico el cual prueba el correcto encendido y apagado de
los SCR. Sin embargo, el primer paso cuando se presenta una falla en los SCR y los
GTO, es la medición de los valores de reistencia y capacitancia tal como se
describió en los parágrafos anteriores.
Caso A
Se revisa el listado de fallos del Drive, obteniéndose los siguientes resultados:
6P o 18P falla en SCR del rectificador (Corto Circuito), la cual se presenta cuando
uno de los SCR del rectificador de 6 o 18 pulsos, entra en cortocircuito.
Para rectificadores con SCR, este fallo se produce después del cierre de contacto
inicial, o durante la secuencia de diagnóstico después de un comando de arranque.
Esta es la primera prueba en el rectificador. Cuando todos los dispositivos están en
bloqueo, la retroalimentación de los dispositivos debe cambiar de abierto a corto
para abrir cada vez que la onda senoidal de voltaje de línea pasa por cero. Si esto
está mostrando constantemente corto, a continuación, la unidad supone que el
dispositivo está en cortocircuito.
Debido a esta falla se realizan mediciones en los elementos de los SCR del
rectificador de 6 pulsos, como se muestra en la Figura 26, se tomaron 6 medidas
teniéndose las siguientes lecturas:
32
Figura 26) Mediciones sobre los SCR.
Sin embargo estos valores están dentro de los valores recomendados por el
fabricante.
3.7.
ARMONICOS
Los armónicos son un problema de compatibilidad electromagnética en la cual
componentes sinusoidales de una señal periódica (Fundamental) generan una
distorsión continua en las señales de tensión y corriente [16].
El problema de los armónicos en la red es uno de los principales retos en el
abastecimiento de energía eléctrica de calidad. Las diferentes cargas conectadas en
puntos determinados de la red de distribución pueden causar distorsión en la forma
de onda de tensión y corriente en otros puntos, Los variadores de frecuencia
pueden ser víctimas o fuentes de emisión de armónicos cuyas propias corrientes
pueden crear también problemas como sobrecalentamiento en componentes del
Drive.
3.8.
PROBLEMAS EN LA CONFIGURACION DEL DRIVE
3.8.1. CONFIGURACION DEL TORQUE
33
Dentro de los principales problemas que se encuentran cuando se configura un
Drive, se encuentra la mala configuración de los parámetros de torque.
Dentro de estos parámetros los principales que son configurados dentro del Drive
son los número 86, 87,84 y 658 (Figura 27).
Figura 27) Parámetros de configuración del Torque.
Los primeros dos parámetros se refieren al torque en el arranque cuando el drive
está trabajando sin enconder de realimentación, el parámetro 86 establece el par de
arranque y el parámetro 87 es el torque en el punto de transición desde el lazo
abierto a lazo cerrado que ocurre aproximadamente a los 3 Hz.
Por otro lado el parámetro numero 84 indica el torque máximo que se le aplicará al
motor durante la operación normal (Figura 28).
Figura 28) Valores recomendados del parámetro 84 de torque.
34
El otro parámetro modificado es el 658 el cual es usado para que el variador de
velocidad se dispare por sobre carga cuando alcanza el 90% de su capacidad
térmica. En este punto el torque es cambiado al valor configurado en este
parámetro, como lo explica la Figura 29.
Figura 29) Valores recomendados del parámetro 658 de torque
3.8.2. CONFIGURACION DEL TIEMPO DE ARRANQUE
Uno de los aspectos más importante a la hora de configurar el drive correctamente
es el tiempo de aceleración desde las cero revoluciones hasta la velocidad nominal.
El tiempo de aceleración es importante para evitar sobrecalentamientos debido a las
altas corrientes de arranque.
Entre mayor sea el torque de aceleración, menor es el tiempo de arranque; los
fabricantes de los motores eléctricos normalmente especifica un máximo tiempo de
arranque el cual debe escogerse dependiendo de la aplicación, ya que el tiempo en
el que el motor alcanza la velocidad nominal depende de la carga que este
impulsando.
Por los motivos anteriormente expuestos, es común que ante cambios en el proceso
o en la carga, deba ser necesario reconfigurar el tiempo de aceleración del Drive el
cual es un parámetro que puede ser ingresado en el drive (Figura 30).
35
Figura 30) Configuración de parámetros de aceleración.
3.8.3. DRIVE FUNCIONANDO EN MODO SENSORLESS
Cuando un variador de frecuencia funciona sin un encoder brindado información
sobre la posición, velocidad torque y potencia del motor, el drive toma su
información internamente, estimando de forma indirecta la información que necesita
para funcionar, para esto utiliza las medidas de la corriente y voltaje con sus
respectivos ángulos [17].
Adicionalmente para que un drive pueda funcionar en modo sensorless deben
ingresarse manualmente algunos parámetros tales como el torque al arranque y
torque en la transición a lazo cerrado.
3.8.4. AUTOTUNE
El auto sintonizador (autotune) es usado para identificar las propiedades eléctricas
del motor que es conectado al drive, de manera general esta mide los siguientes
parámetros [18]:




IR caída de voltaje, el cual es la caída de voltaje sobre la resistencia.
Ixo caída de voltaje, el cual es la caída de voltaje sobre la inductancia.
Corriente de Flujo
Deslizamiento en RPM (este se mide cuando hay un encoder o usando el
valor de la placa del motor.
36
Auto sintonizar el motor adecuadamente permite asegurar un torque de arranque
elevado y un mejor rendimiento a bajas velocidades. Al contrario una mala
sintonización puede causar que el motor exhiba inestabilidad a baja velocidad y un
rendimiento inferior. Adicionalmente, puede causar fallos innecesarios de sobre
tensión y sobre intensidad.
Hay dos tipos de auto Tune (autotune estático y autotune rotativo). El auto tune
estático se presenta cuando no es fácil desacoplar la carga del motor y
adicionalmente se presentan restricciones mecánicas de movimiento las cuales
impiden que el eje del motor pueda girar, este tipo de sintonización no es tan precisa
como la sintonización rotativa, la cual se realiza cuando el motor esta desacoplado o
presenta una carga de baja fricción, en este se obtienen resultados más precisos.
Esta sintonización causa que el motor gire a diferentes velocidades mientras se está
ejecutando.
Adicionalmente se realiza una sintonización de la inercia total del sistema, la cual se
ejecuta con la carga acoplada al motor usando un valor inicial de torque y midiendo
el tiempo de aceleración desde el motor a velocidad cero hasta la velocidad
nominal, de esta manera el drive identifica la cantidad total de inercia y la guarda
dentro de sus parámetros.
3.8.5. CASOS ESTUDIADOS DE PROBLEMAS EN LA CONFIGURACION DEL
DRIVE
A continuación se muestra un caso en el cual se presenta una falla en un variador
de frecuencia debido al mal funcionamiento del encoder ubicado en el motor de un
sistema de bombeo, en este caso fue necesario revisar la configuración del torque
en los parámetros del Drive para posteriormente detectar el problema en el encoder,
ante esta situación se decide cambiar el modo de funcionamiento del Drive a
SensorLess mientras se repara o reemplaza la parte dañada.
Caso A
Se presenta la falla Motor STALL (cuando el motor no gira aunque se le aplique un
torque es considerado en estado STALL o de bloqueo), en el Drive en el momento
en el que se desea arrancar el motor. Luego de revisar los parámetros de torque y
encontrarlos dentro de un rango normal, se procede deshabilitar el encoder y a
configurar los parámetros del torque para su funcionamiento en forma SensorLess,
luego se intenta poner en funcionamiento el Drive, el cual logra arrancar
correctamente.
37
Se concluye que el encoder debe ser reemplazado o reparado, mientras el drive
funciona en modo SensorLess.
3.9.
PROBLEMAS DE CONTAMINACION
La contaminación debido a partículas metálicas, polvo y humedad, pueden ser una
de las principales causas de fallas en los variadores de frecuencia (Figura 31).
Exceso de polvo puede causar sobrecalentamiento debido a la contaminación en los
disipadores de calor. Adicionalmente pueden causar mal funcionamiento de los
ventiladores afectando la refrigeración del Drive, las partículas metálicas pueden
generar cortocircuitos y mala operación de los contactos del Drive.
Figura 31) Contaminación encontrada en el transformador de un Drive.
3.10. CASOS ESTUDIADOS DE PROBLEMAS DE CONTAMINACION
A continuación se muestra un caso en el que se presenta humedad excesiva en el
Drive, pudiendo ser esta la causa de un cortocircuito. Al ser los problemas de
contaminación producidos por los ambientes industriales en los cuales están
instalados los variadores de frecuencia, es necesario revisar los grados de
protección de los encerramientos y tomar las medidas necesarias para resguardar el
variador de las condiciones ambientales adversas. Adicionalmente, realizar
mantenimientos preventivos periódicamente para limpiar el variador y corregir
problemas es una medida efectiva para mitigar los posibles daños causados por la
contaminación.
Caso A
38
Se presenta un posible corto circuito en el bus DC de los variadores de velocidad de
las unidades principales de una estación de bombeo. Se verifican las conexiones de
la alimentación eléctrica tanto en el suministro de energía como en la alimentación
del motor, sin encontrarse ninguna anomalía en los dispositivos. Adicionalmente se
encuentra rastros de condensación debido a cambios de temperatura que sumados
a un aire acondicionado sobredimensionado y a lluvias, generan humedad y
circulación de agua en el cuarto de los variadores de frecuencia (Figura 32 y 33).
Figura 32) Caso A, Condensacion de agua en los variadores de Frecuencia.
Figura 33) Caso A, Humedad excesiva en el cuarto de los variadores de Frecuencia.
3.11. PUESTA A TIERRA EN VARIADORES DE FRECUENCIA
En la figura 34 se muestra una configuración de tierra aceptable para la instalación
de un variador de frecuencia [19]:
39
Figura 34) Puesta a tierra en un Variador de Frecuencia según la guía para el cableado y puesta a
tierra para Drives AC con PWM.
La conexión a tierra es una conexión conductora de baja resistencia entre circuitos
eléctricos, equipos y tierra, en la cual puede usarse la estructura metálica del edificio
o en su lugar varillas de puesta a tierra.
Como se puede ver en el diagrama, todas las tierras están interconectadas,
incluyendo la conexión a tierra del motor, el Drive y el transformador de entrada.
Cuando surge un cortocircuito se activa la falla a tierra en el variador.
3.12. TABLA RESUMEN
A continuación se muestra la tabla 6, la cual busca ser un rápido método para la
identificación de problemas presentes en los variadores de frecuencia de manera
eficaz. En ella es posible identificar los síntomas más comunes presentes en los
Drives y las acciones para mitigar el problema.
40
Problema
Sintomas
Acciones para mitigar el problema
Problemas de Falla a tierra
Suma de las 3 corrientes de fase
Fuera de rango del drive.
Subtensiones
Uso de reactores que se oponen a las
Valores de voltaje por debajo de los fluctuaciones de tension, estudio de la
parametros del drive.
calidad de la energia Suministrada al
variador de frecuencia.
Sobretensiones
Voltajes en el bus DC por encima
del valor nominal que pueden
llegar a quemar circuitos del drive,
o activar las protecciones a la
entrada del drive.
Sobretensiones Transitorias
Fallas en el aislamiento de los
motores, daños en los devanados
del motor.
Problemas en los componentes
electronicos de potencia
Componentes electronicos de
potencia dañados.
Armonicos
Sobrecalentamiento en los
componentes electronicos del
drive, ruido presente en las redes
de comunicación.
Problemas en la configuracion del
Drive
Problemas de Contaminacion
Cambiar el Componente que genera la
falla.
Resistencias de frenado que disipan la
energia generada por el motor cuando
desacelera, estudio de la calidad de la
energia Suministrada al variador de
frecuencia.
mantenerse dentro de las longitudes de
conductor maximas permitidas entre el
variador y el motor, usar reactancias,filtros
o terminales para disminuir los fectos de la
sobretension en el motor.
Hacer revision continua del buen estado de
los componentes Snubber de los
dispositivos electronicos de potencia.
Uso de filtros, o reactores que se oponen a
las fluctuaciones de tension.
Cada vez que se realice un cambio en la
Vibraciones en el motor, intetos de aplicación, correr el autotune del drive, ver
arranque fallidos.
los valores por defecto en el manual de
proramacion del drive.
Sobrecalentamiento del Drive, mal
funcionamiento en los ventiladores
de refrigeracion, cortocircuitos,
Realizar limpiesas periodicas del drive.
mala operación de los contactos del
drive.
Tabla 6) Tabla Resumen.
41
4. PASOS PARA DIAGNOSTICAR UNA FALLA
4.1.
BUCKUP DE LOS PARAMETROS DEL DRIVE E INSPECCION MECANICA.
Como primera medida siempre se obtienen y guardan todos los parámetros del
Drive, esto se hace debido a que es la configuración inicial con la que estaba
funcionando el Drive y ante cambios realizados en la programación, siempre se
puede volver al punto inicial de configuración. Adicional a esto, es importante hablar
con el operador de la planta para saber todo lo que ocurrió en el momento de la
anomalía, ya que puede dar un indicio de donde se encuentra la falla en el variador
de frecuencia.
El siguiente paso se refiere a la inspección visual del motor en busca de signos de
sobrecalentamiento, obstrucciones mecánicas, rodamientos dañados y cualquier
indicio de mal funcionamiento del motor, esto se hace antes de entrar a inspeccionar
los circuitos del Drive. Con esto se busca reparar el area alrededor de la carga e
identificar daños mecánicos en el sistema motor-carga y sus acoplamientos, los
pasos a seguir se muestran en la Figura 35.
42
Figura 35) Pasos para diagnosticar una falla.
43
4.2.
INSPECCION DEL CABLEADO DEL MOTOR
Luego de hacer la inspección mecánica del motor se busca evidencias de mal
cableado tales como, ruidos en el interior del motor y signos de cable en mal estado,
de igual forma quemaduras y motor sin cubierta.
En este paso también se revisa el registro de mantenimiento del motor, para ver si
ha sido reparado o si recientemente ha sido cambiado el cableado del motor, ya que
al ser intervenida la maquina se aumenta la probabilidad de que se haya cometido
un error que provoque el mal funcionamiento en la misma (Figura 36).
Figura 36) Pasos para diagnosticar una falla.
44
4.3.
INSPECCION DE CABLEADO Y TERMINALES
En este punto se revisan las conexiones y terminales del cableado que sale del
Drive y va hacia el motor en busca de cortes, raspaduras y ruido eléctrico. En esta
fase se realiza la primera aproximación al drive con el fin de hacer inspección visual
y revisar las terminales de cableado del mismo. En caso de encontrar cualquier
desperfecto se debe reparar el cable o cambiar las terminaciones (Figura 37).
45
Figura 37) Pasos para diagnosticar una falla.
46
4.4.
INSPECCION DE LAS TARJETAS Y CONEXIONES DEL DRIVE
Luego de haber revisado el motor, el cableado y sus terminales, el paso a seguir es
revisar indicios de quemaduras en las tarjetas del Drive o malas conexiones o
conexiones flojas, incluyendo las tarjetas de control y de disparo de los circuitos, en
esta etapa se realiza la medición de los valores de le los resistores y condensadores
de los SCR y los GTO (Figura 38).
De ser necesario las tarjetas del Drive deben ser reemplazadas y se debe volver
ensamblar el Drive, en este aspecto se deben revisar, una a una, todas las
conexiones en busca de defectos.
47
Figura 38) Pasos para diagnosticar una falla.
48
4.5. REVISION DEL CODIGO DE FALLA DEL DRIVE Y DE LOS VALORES
RECOMENDADOS POR EL FABRICANTE.
Luego de revisar todo el cableado, las tarjetas y las conexiones, el paso a seguir es
revisar el código de falla que arroja el Drive y compararlo con el manual del usuario,
de ser necesario se deben reajustar los parámetros del Drive, para esto se puede
ver y descargar los códigos de falla a través de la interfaz humano máquina del
variador. En los capítulos anteriores se mostraron las principales fallas que se
presentan en los variadores de frecuencia y sirve como referencia para una rápida
solución de problemas (Figura 39).
Figura 39) Pasos para diagnosticar una falla
49
4.6.
PASOS A SEGUIR EN CASO DE RUIDO ELECTRICO
Alguna de las formas de evidenciar un posible problema de ruido eléctrico se
muestra en la Figura 40. Sin embargo, un estudio de calidad de la energía es la
única forma de comprobar un problema de ruido eléctrico.
Adicionalmente, revisar todo el sistema de puesta a tierra puede ser la solución
cuando se presentan problemas intermitentes en variadores de frecuencia.
Figura 40) Pasos a seguir en caso de Ruido Eléctrico.
50
5. CONCLUSIONES
En las plantas industriales en donde se realizan grandes consumos de energía
eléctrica para llevar a cabo los procesos de fabricación, resulta ser este suministro
fundamental para la operación y la continuidad de las líneas de producción en las
que se ven envueltos variadores de frecuencia, en este estudio se evidenció que las
principales causas por las cuales los Drives fallan están relacionadas en más de un
50% a problemas de calidad en la energía eléctrica.
Fluctuaciones de tensión, armónicos, subtensiones, sobretensiones y transitorios
están presentes en los sistemas de los Drives que sirve de suministro a los motores
eléctricos, dando lugar a la necesidad de utilizar elementos externos al variador para
mitigar los efectos adversos de estos problemas, así el uso de filtros, resistencias de
frenado, reactores y terminales capacitivas son costos adicionales significativos a
considerar a la hora de realizar migraciones de los arrancadores directos a
variadores de frecuencia, además, de suponer mantenimientos más complejos y
especializados.
Por otro lado, debido a la sensibilidad de los variadores de frecuencia ante las
perturbaciones del suministro de energía, también es inherente el aumento de la
probabilidad de que existan tiempos de paradas de planta, por lo cual se deben
tener planes de mantenimiento periódicos basados en la condición que aseguren
bajas intervenciones no programadas, que provoquen tiempos de improductividad y
perdidas económicas para las empresas.
Dentro de estos planes de mantenimiento se debe tener en consideración el
comisionamiento, instalación y puesta en marcha de nuevos variadores de
frecuencia, ya que la correcta realización de estos es fundamental para evitar sobre
costos por fallas en la parametrización y sintonización del variador. Una inadecuada
puesta en marcha puede generar vibraciones en el motor, sobrecorrientes y
sobretensiones, entre otros.
Adicionalmente, cada aplicación en la que se use variadores de frecuencia debe ser
estudiada de manera independiente, por lo tanto la configuración de los variadores
de frecuencia debe hacerse de manera customizada y no es replicable en otros
sistemas.
En este estudio se presentaron las estrategias para la identificación y solución de
problemas ante fallas, considerando siempre que los operadores de las plantas son
51
quienes conocen mejor sus procesos y la operación de cada dispositivo dentro de
su línea de producción, y por tanto es importante que lleven un registro de todos los
cambios y eventos que se presenten, ya que son estos los mejores métodos para
establecer un plan de mantenimiento adecuado.
6. REFERENCIAS
52
[1] R. Krishnan, Electric Motor Drives. New Jersey: Prentice Hall, 2001
[2] R.L. Narayanan. "Behaviour o Variable Speed Drives Under the Influence of
Voltage Sags", Master’s thesis, University of Wollongong, Wollongong, Australia,
1991.
[3] When to use a Soft Starter or an AC Variable Frequency Drive, Allen Bradley,
Rockwell Automation Publication 150-WP007A-EN-P, October 2014.
[4] Derek A. Paice, Power Electronic Converter Harmonics, New Jersey: IEEE Press,
1996.
[5] M.Barnes, Practical variable speed drives and power electronics, Burlington:
Newnes, 2003.
[6] A.K.Jain, G.K. Chaitanya, V.A. Kumar "Modeling and simulation of frequency
converter used in speed control of asynchronous motor", International Journal of
Scientific and Research Publications, Volume 3, Issue 4, April 2013.
[7] T.S Irwin "VFD fudamentals and troubleshooting", South Carolina, USA, Feb.
2016.
[8] T.M. Murphy. "a method for evaluating the application of variable frequency drives
with coal mine ventilation fans", Master’s thesis, Virginia Polytechnic Institute, 2006.
[9] A. Bonifacio, P. Coelho, I. Fonseca, F. Lopez. "Energy Reductions in the Pulpand-Paper Industry by Upgrading ConventionalPumping Systems through the
Installation of VFDs – A Case Study", International Conference on Renewable
Energies and Power Quality, Mar. 2012.
[10] A.T de Almeida, F.J.T.E Ferreira, D. Both. "technical and economical
considerations in the application of variable speed drives with electric motor
systems", IEEE transactions on industry applications, vol. 41, no. 1, january/february
2005.
[11] Stephen L. Herman, Electrical Wiring Industrial. Stamford, USA: Cengage
learning, 2012.
53
[12] PowerFlex 750-Series AC Drives, Allen Bradley, Rockwell Automation
Publication 750-PM001L-EN-P, January 2016.
[13] Application basics of operation of three-phase induction motors, Allen Bradley,
icg-wp000_-en-p, 1996.
[14] Parameter Settings for PowerFlex Drives Using Sine Wave Filters, dv/dt Filters,
and Adjustable Voltage, Allen Bradley, Rockwell Automation Publication PFLEXAT002B-EN-P, August 2014.
[15] PowerFlex Dynamic Braking Resistor Calculator, Allen Bradley, Rockwell
Automation Publication PFLEX-AT001K-EN-P, September 2011.
[16] PowerFlex® 7000 Medium Voltage AC Drive, Allen Bradley, 7000A-UM150FEN-P, June 2013.
[17] Ewald F. Fuchs, Power Quality in Power Systems and Electrical Machines. USA:
Elsevier, 2008.
[18] PowerFlex 700S and PowerFlex 755 Drives Tuning, Allen Bradley, Rockwell
Automation Publication DRIVES-AT004A-EN-P, April 2015.
[19] Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives,
Allen Bradley, Rockwell Automation Publication DRIVES-IN001M-EN-P, March 2014.
54