Download θ - Coneau

Document related concepts
no text concepts found
Transcript
MINISTERIO DE EDUCACIÓN - ARGENTINA
ACCEDE - INGENIERÍA EN ALIMENTOS
PROBLEMA Nº 6
SITUACIÓN
Un producto alimenticio fresco se deshidrata con aire atmosférico, en un secadero
discontinuo que opera con lotes de bandejas. El aire se calienta en forma indirecta antes
de llegar a las bandejas a fin de aumentar su capacidad de absorber agua.
Las transformaciones que sufre el aire se pueden seguir en un diagrama psicrométrico
(como el que se adjunta).
INFORMACIÓN A TENER EN CUENTA
La deshidratación se realiza en dos períodos sucesivos. Durante el primer período, el
aire extrae agua del sólido a una velocidad de secado constante. El segundo período se
realiza con velocidad de secado decreciente. Para este período, el mecanismo de
disminución del contenido de humedad dentro del producto se puede representar
mediante la expresión:
m − meq
mi − meq
donde:
D
=
8
e
π2
 π2 D θ 
−

 4 L2 


: coeficiente de difusividad del agua en el producto
L : distancia máxima (supuesto placa plana) que debe atravesar el agua
θ
: tiempo de deshidratación
mi : contenido de humedad del producto al comienzo de período de secado
m : contenido de humedad del producto al tiempo θ
m eq : contenido de humedad de equilibrio (a la temperatura de secado)
ACCEDE - AGOSTO DE 2002 – INGENIERÍA EN ALIMENTOS – PROBLEMA 6
Página 1
ACCEDE - AGOSTO DE 2002 – INGENIERÍA EN ALIMENTOS – PROBLEMA 6
Página 2
SUBPROBLEMA 6.1
La deshidratación se realiza con aire atmosférico. Se utiliza un caudal de 3 kg/s de aire
seco, que ingresa al secadero a una temperatura de bulbo seco de 293 K y un porcentaje
de humedad del 60%. El aire se calienta en forma indirecta para llegar a las bandejas a
una temperatura de bulbo seco de 333 K.
Calcular la cantidad de calor que debe suministrarse al aire para aumentar su
temperatura, representando en un diagrama psicrométrico el calentamiento del aire, a
partir de las condiciones de entrada al secadero.
RESPUESTA AL SUBPROBLEMA 6.1
A partir del diagrama psicrométrico se obtiene distintos parámetros del aire:
temperatura de bulbo seco Tbs , temperatura de bulbo húmedo Tbh , humedad absoluta x ,
humedad relativa ϕ , entalpía específica (por kg de aire seco) ĥ , según se los necesite:
Al ingresar al secadero ( Tbs = 293 K , ϕ = 60%) (Punto “1”) :
x = 0,009 kg/kgAS
ĥ = 40 kJ/kgAS
Al finalizar el calentamiento y comenzar el secado constante ( Tbs = 333 K ) (Punto “2”)
:
ϕ = 7%
x = 0,009 kg/kgAS
Tbh = 300 K
ĥ = 85 kJ/kgAS
Se calcula la cantidad de calor que debe suministrarse al aire para aumentar su
temperatura, aplicando el primer principio de la Termodinámica
Respuesta: Q = G AS (hˆ 2 − hˆ1 ) = 3 . (85 – 40) = 135 kW
Y en el diagrama psicrométrico se grafica la evolución del aire (del punto “1” al ”2”):
ACCEDE - AGOSTO DE 2002 – INGENIERÍA EN ALIMENTOS – PROBLEMA 6
Página 3
SUBPROBLEMA 6.2
El aire caliente llega a las bandejas a una temperatura de bulbo seco de 333 K. Allí
elimina agua del producto.
La deshidratación se realiza en dos períodos sucesivos Durante el primer período, el aire
extrae agua del sólido a una velocidad de secado constante de 0,006 kg/s.
Calcular la humedad absoluta del aire al finalizar el período de velocidad de secado
constante, representando en un diagrama psicrométrico la humidificación del aire, a
partir de las condiciones de llegada a las bandejas.
RESPUESTA AL SUBPROBLEMA 6.2
A partir del diagrama psicrométrico se obtiene distintos parámetros del aire:
temperatura de bulbo seco Tbs , temperatura de bulbo húmedo Tbh , humedad absoluta x ,
humedad relativa ϕ , entalpía específica (por kg de aire seco) ĥ , según se los necesite:
Al finalizar el calentamiento y comenzar el secado constante ( Tbs = 333 K ) (Punto “2”)
:
ϕ = 7%
x = 0,009 kg/kgAS
Tbh = 300 K
ĥ = 85 kJ/kgAS
Se calcula la humedad absoluta del aire al finalizar el período de velocidad de secado
constante, aplicando un balance de masa para el agua removida
G AS x 2 + W = G AS x 3
siendo W = 0,006 kg/s de agua
Respuesta: x 3 = x 2 + (W / G AS ) = 0,009 + (0,006/3) = 0,011 kg/kgAS
y el aire evoluciona saliendo de las bandejas al finalizar el secado constante con entalpía
constante ĥ = 85 kJ/kgAS, y temperatura de bulbo húmedo constante Tbh = 300 K.
En el diagrama psicrométrico se obtiene las condiciones de salida de las bandejas, Tbs =
328 K y ϕ = 12%, (Punto “3”):
ACCEDE - AGOSTO DE 2002 – INGENIERÍA EN ALIMENTOS – PROBLEMA 6
Página 4
SUBPROBLEMA 6.3
Un producto alimenticio fresco, en forma de papilla, con 80% de humedad inicial y una
densidad de 1080 kg/m3 , se deshidrata hasta un contenido de humedad final de 0,1 kg de
agua por kg de sólido seco. Se considera que la masa de producto está formada por la
masa de producto seco (sin agua) más la cantidad de agua.
La deshidratación se realiza con aire atmosférico, en un secadero discontinuo que opera
con lotes de 40 bandejas. Todas las bandejas son de sección rectangular, de 0,5 m de
ancho y 1 m de largo y se llenan con un espesor de 0,02 m del producto a deshidratar. El
agua se elimina del producto por la parte superior de las bandejas. Para cargar y
descargar un lote en el secadero se necesitan 1800 s.
La deshidratación se realiza en dos períodos sucesivos. Durante el primer período, cuya
duración es de 14400 s, el aire extrae agua del sólido a una velocidad de secado
constante. Al finalizar este período se alcanza el contenido de humedad crítica, cuyo
valor es de 3 kg de agua por kg de sólido seco.
El segundo período se realiza con velocidad de secado decreciente. Se conoce que el
coeficiente de difusividad del agua en el alimento es de 1,5.10-8 m2 /s y que el contenido
de humedad de equilibrio es despreciable, en las condiciones en que se está
deshidratando.
Calcular la producción por lote en el secadero, expresada en términos de “masa de
producto deshidratado por unidad de tiempo”
RESPUESTA AL SUBPROBLEMA 6.3
Se calcula el contenido de humedad inicial en base seca:
Si la humedad en base total es de 80%, cada kg de producto contiene 0,8 kg de agua y
0,2 kg, es decir
0,8 / 0,2 = 4 kg de agua / kg SS
La masa de producto obtenida por lote es la masa de sólido seco con la humedad final
correspondiente:
Para calcular la masa de sólido seco se parte de la expresión que permite conocer la
masa de sólido húmedo :
M SH = M SS (1 + mi ) = ρ . Vol B = ρ . A . L . N B°
Despejando M SS :
ACCEDE - AGOSTO DE 2002 – INGENIERÍA EN ALIMENTOS – PROBLEMA 6
Página 5
M SS
ρ. A . L ⋅ N B°
=
= (1080 . 0,5 . 0,02 . 40) / (1 + 4) = 86,4 kg
(1 + mi )
La masa de producto deshidratado que se obtiene por lote es
M = M SS (1 + m f
)
siendo el contenido de humedad final m f =0,1 kg/kgSS
M = 86,4. (1 + 0,1) = 95,04 kg
El tiempo de residencia del lote de producto en el equipo de secado para lograr la
humedad final requerida es la suma del tiempo del período de velocidad de secado
constante (es dato, θPVSC = 14400 s), el tiempo del período de velocidad de secado
decreciente y el tiempo de carga y de descarga del lote en el secadero (es dato, θCD
=1800 s). Se calcula el tiempo de duración del período de velocidad de secado
decreciente mediante
m − meq
mi − meq
 π 2D θ 

4 L2 
8  −
= 2 e
π
aplicando logaritmos:
 m − meq
ln 
 m I − meq


 = ln  82

π

2
 − π Dθ

4 L2

La humedad inicial mi en este período es la humedad crítica mC (3 kg/kgSS). El
tiempo θ es el tiempo del período θPVSD , en el cual se alcanza la humedad final
m = m f = 0,1 kg/kgSS. El contenido de humedad de equilibrio m eq se supone
despreciable. La distancia L es el espesor de las bandejas pues el agua se elimina por la
superficie superior.
Se obtiene:
 m − meq 
 = ln  82
ln  C
 m f − meq 
π


2
 − π D θ PVSD

4 L2

Despejando el tiempo
θPVSD
 8
4 L2
= 2 ln  2
π D π
 mC − meq  


 m − m  
eq  
 f
θPVSD = [(4 . (0,02)2 ) / π 2 . 1,5.10-8] ln [(8 /π 2 ) (3 / 0,1)] = 34490 s
Se calcula el tiempo de residencia del producto en el equipo de secado para lograr la
humedad final requerida. Es la suma del tiempo del período de velocidad de secado
ACCEDE - AGOSTO DE 2002 – INGENIERÍA EN ALIMENTOS – PROBLEMA 6
Página 6
constante ( θPVSC = 14400 s), el tiempo del período de velocidad de secado decreciente
( θPVSD = 34490 s), y el tiempo de carga y descarga del lote ( θCD = 1800 s). En total, θ =
50690 s.
Respuesta: La producción por lote es
M / θ = 95,04 kg / 50690 s
M / θ = 0,0019 kg/s
ACCEDE - AGOSTO DE 2002 – INGENIERÍA EN ALIMENTOS – PROBLEMA 6
Página 7