Download 1. Un transformador de tensión es reversible. Si se toman dos

Document related concepts

Transformador wikipedia , lookup

Autotransformador wikipedia , lookup

Grupo de conexión wikipedia , lookup

Motor asíncrono wikipedia , lookup

Ensayo de vacío wikipedia , lookup

Transcript
1. Un transformador de tensión es reversible. Si se toman dos transformadores idénticos
de 230/12 V y si conectan los dos secundarios entre si y uno de los primarios se
conecta a una toma de tensión, ¿En el otro primario se dispondrá de la misma tensión
e intensidad que en la toma de tensión?
No, ya que existen perdidas, pudiendo hacer tal conexionado en un transformador
ideal.
2. ¿A que denominamos bobinado de alta y a que llamamos bobinado de baja?
El bobinado de alta se conecta en alta tensión al primario tensión (que tienen muchas
espiras) están codificadas con la letra “H” para designar sus terminales.
El bobinado de baja se conecta en baja tensión y es la salida. Los terminales de baja
tensión, están designados por la letra “X”.
3. ¿A qué denominamos aislamiento galvánico?
El aislamiento galvánico consiste en la separación de partes funcionales de un circuito
eléctrico para prevenir el traspaso de portadores de carga. Este tipo de aislamiento se
usa cuando se desea que se transmitan señales entre las distintas partes funcionales,
pero las masas tienen que mantenerse separadas, la corriente no puede fluir
directamente entre ellas. El aislamiento galvánico no impide la transferencia de
energía o información, pero no se presenta ningún contacto eléctrico por lo que no
existe conexión alguna.
4. ¿Qué relación existe entre los webers y los teslas?
Un weber (Wb) es la unidad de flujo magnético del Sistema Internacional, que equivale
al flujo que atraviesa una espira de un metro cuadrado situada en un campo magnético
uniforme de inducción de una tesla.
Un tesla (T) es la unidad de inducción magnética y densidad del flujo magnético del
Sistema Internacional, que equivale a la inducción que, repartida sobre una superficie de un
metro cuadrado, produce a través de esta superficie un flujo magnético de un weber.
5. En un transformador ideal, ¿Se tienen perdidas por efecto Joule?
No, en un transformador ideal no existe ningún tipo de perdidas, ni
magnética ni eléctrica.
6. En un transformador ideal, ¿Hay flujo de dispersión?
No, porque en un transformador ideal no se consideran perdidas.
7. En un transformador ideal, ¿Se tienen perdidas Foucault?
No, ya que en un transformador ideal no hay dispersión de flujo magnético, y las pérdidas de
Foucault se producen en cualquier material conductor cuando se encuentra sometido a una
variación del flujo magnético.
8. ¿Cómo se denomina a la corriente que circula por el primario de un transformador
cuando el secundario esta en circuito abierto?
Corriente de vacío.
9. ¿El flujo causado por el primario está en fase con la tensión o con la corriente?
¿Cuántos grados desfasa la magnitud con la que no está en fase?
El flujo está en fase con la corriente y tiene un desfase con respecto de la tensión de 90º.
10. ¿Puede un transformador operar con corriente continua? ¿Por qué?
No ya que con la corriente continua no existe un flujo variable, ya que al generar un
campo magnético en un núcleo metálico por lo cual no se puede inducir al cable de la otra
bobina a no ser que su dirección cambie de sentido o exista algún movimiento respecto a
él.
11. La relación de transformación es una proporción directa entre la tensión en el
devanado primario y en el secundario y el número de espiras en cada uno de ellos
¿Esta afirmación seguiría siendo cierta si hablamos de corriente? ¿Cuál sería?
r=
𝑈1 𝑁1
=
𝑈2 𝑁2
r=
𝑈1 𝐼1
=
𝑈2 𝐼2
La afirmación seguiría siendo cierta:
12. ¿Cuál es la potencia en vacío de un transformador?
Es aquella que está sin carga, no existe corriente circulando por la carga, sus pérdidas
son las que se generan en el núcleo del devanado de alimentación.
13. ¿Qué se entiende por potencia nominal de un transformador?
La potencia nominal es la multiplicación de tensión nominal por corriente nominal por
coseno de fi.
14. ¿Cuáles son las dos componentes de la corriente de vacío en el transformador real?
-
Voltaje en vacío
Intensidad en vacío
¿Qué ángulo forman entre si estas dos componentes?
El ángulo formado es el arcocoseno de la potencia obtenida.
15. ¿Qué tres parámetros de interés no permite determinar el ensayo en vacío del
transformador?
Los principales datos que hay que determinar en el ensayo en vacío son:
• Las pérdidas en el hierro a través de la lectura del vatímetro (W1) en el
bobinado primario, entendiendo que la P10 es la potencia medida en el
vatímetro (W1).
(PFe = P10)


La intensidad en vacío del primario a través del amperímetro (A1).
La relación de transformación (m): m=U1n / U20
16. ¿Qué de dos parámetros de interés nos permiten determinar el ensayo en
cortocircuito del transformador?
- La tensión de cortocircuito (Ucc). Este parámetro interviene, directamente, en la
corriente de cortocircuito permanente, en las expresiones de la caída de tensión y
en l asociación en paralelo de transformadores.
Ucc= Ucc . 1oo/U1n (en %)
-
La potencia de pérdidas nominales en los devanados primario y secundario.
17. ¿Cómo definimos el índice de cargas? ¿Qué interés tiene este parámetro?
Llamamos índice de carga a la relación que hay entre la corriente de trabajo y la corriente
nominal. Un transformador puede trabajar a plena carga, es decir, conectado a sus
valores nominales; o puede trabajar a un valor inferior. Así pues el índice de carga es la
relación entre la intensidad de trabajo y su valor nominal.
-
Con este parámetro podemos ver las pérdidas de efecto joule en función de las
perdidas en condiciones nominales.
18. ¿Qué relación existe entre la potencia perdida y el rendimiento de un transformador?
Potencia perdida:
Es el resultado de la potencia absorbida menos la potencia útil.
Rendimiento de un transformador:
Es la relación entre la potencia útil y la potencia absorbida de la red.
19. ¿Cómo definirías la caída de tensión en un transformador?
Podemos definir la caída de tensión como la diferencia entre la tensión del primario y
la del secundario referido al primario, ya que a efectos prácticos se considera que la
tensión primaria es constante, y que la caída de tensión va referida al secundario y las
perdidas en el núcleo, junto con la resistencia del propio bobinado.
20. Un transformador para la medida de una tensión, ¿Se conecta en serie o en paralelo
con la tensión que hay que medir? ¿Y uno de corriente?
La medición de tensión se conectará un transformador en paralelo.
La medición de intensidad se conectará un transformador en serie.
21. ¿Sabrías citar, al menos, una ventaja y un inconveniente de los auto transformadores?
Entre las ventajas de los autotransformadores podemos destacar:
 El autotransformador lleva un solo bobinado.
 Menores caídas de tensión.
 Menor intensidad de vacío.
 Es más fácil de construir y requiere menos cobre.
 En consecuencia es más económico.
 Parte de la energía del autotransformador se transmite eléctricamente.
 Las perdidas eléctricas siempre son menores que las perdidas magnéticas.
 El autotransformador tiene mayor rendimiento.
Y entre los inconvenientes podemos nombrar:
 La principal desventaja de los autotransformadores es que a diferencia de los
transformadores ordinarios hay una conexión física directa entre el circuito
primario y el secundario, por lo que se pierde el aislamiento eléctrico en
ambos lados.
 Peligro del corte de una espira, lo que produciría que el secundario quede
sometida a la tensión del primario
 Conducción galvánica entre el primario y secundario.
 Baja regulación de tensión debido a su baja impedancia equivalente.
 La salida del transformador no está aislada con la entrada, este se vuelve
inseguro para la persona que lo opera.
22. ¿A qué denominamos íncice horario y qué interés tiene este parámetro?
El índice horario indica los desfases en múltiplos de 30º, de tal forma que 30º = 1, 60º
= 2, 90º = 3, etc. El desfase entre las tensiones compuestas se mide con el índice
horario.
Dependiendo de los tipos de conexión de los devanados de un transformador, pueden
aparecer unas diferencias de fase entre las tensiones compuestas de primario y
secundario. Para que esta diferencia de fase quede unívocamente determinada se
supondrá que el transformador se alimenta por medio de un sistema equilibrado de
tensiones de sentido. De esta forma son ángulos positivos los de retraso del lado de
menor tensión respecto al devanado de tensión más elevada. Los ángulos se miden en
múltiplos de 30º, identificando por 1 a 30º, 2 a 60º, 3 a 90º, etc. Esto permite
nombrar los ángulos como se nombrarían las horas en un reloj.
23. La letras mayúsculas, ¿Hacen referencia a los bornes de los devanados del primario o
del secundario? ¿Y minúsculas?
Las letras mayúsculas hacen referencia a los bornes del devanado del primario.
Las letras minúsculas hacen referencia a los bornes del devanado del secundario.
24. ¿Qué significa Dd0, Dz2, Yzl, Dd10 y Dy?
Dd0: El primario está conectado en triangulo, el secundario en triangulo también y
están fase.
Dz2: el primario está conectado en triangulo, el secundario esta en zigzag y está
desfasado en 60º.
30º.
Yz1: El primario está conectado en estrella, el secundario en zigzag y está desfasado en
Dd10. El primario está conectado en triangulo y el secundario también y están
desfasados en 300º.
Dy: el primario está conectado en triangulo y el secundario está conectado en estrella
y están en fase.
25. Responde al siguiente cuestionario.
 Un transformador es:
Un aparato estático que convierte energía eléctrica unas características en
energía eléctrica con otras caracteríscas.

El devanado primario es el se conecta a la fuente de alimentación:
Cierto.

La f.e.m. en un transformador es proporcional a:
El número de espiras del devanado y del flujo.

Un transformador en vacío no absorbe potencia de la red:
Falso. Absorbe una potencia igual a las perdidas en el hierro del
transformador.

El rendimiento de un transformador con una carga fija aumenta con el factor
de potencia.
Falso.