Download CHAPTER 6

Document related concepts

Motor de corriente alterna wikipedia , lookup

Motor asíncrono wikipedia , lookup

Motor de corriente continua wikipedia , lookup

Jaula de ardilla wikipedia , lookup

Fuerza contraelectromotriz wikipedia , lookup

Transcript
1
Los Vehículos Híbridos y Alternativos de Combustible
··· CAPÍTULO 6
Los Motores Eléctricos, los
Generadores, y los Controles
Los OBJETIVOS
Después de estudiar Capítulo 6, el lector debería poder:
1.
Describa la operación de CD y corriente alterna motores eléctricos.
2.
Explique cómo surte efecto un motor de CD de brushless.
3.
Discuta las ventajas y las desventajas de usar motores eléctricos en vehículos eléctricos híbridos.
4.
Explique qué tan eléctrico el poder timoneando fábrica.
5.
Describa cómo surte efecto un convertidor CD A CD.
6.
Discuta cómo surte efecto un invertidor CD A CORRIENTE ALTERNA.
TECLEE TÉRMINOS
2
Los Vehículos Híbridos y Alternativos de Combustible
ACIM
El motor de corriente alterna
El inducido
El motor de brushless
El conmutador
El motor de CD
El ruido eléctrico
La electromagnética
El electromagnetismo
Los discos de corta duración
El fundente
El hp
IGBT
El motor de conscripción
El invertidor
IPM
El kW
La ley de Lenz
La piedra imán
El magnetismo
MOSFET
PDU
La permeabilidad
El polo
PWM
La renuencia
El resolvente
2
3
Los Vehículos Híbridos y Alternativos de Combustible
La regla de mano derecha
El rotor
El motor de CD sin sentido
SPM
El rotor de la jaula de ardilla
El estator
3
4
Los Vehículos Híbridos y Alternativos de Combustible
LOS FUNDAMENTOS DE MAGNETISMO
El magnetismo es una forma de energía que se generó por el movimiento de electrones y alineación de átomos en
algunos materiales. Es reconocido por la atracción que ejerce sobre otros materiales. Guste la electricidad, el
magnetismo no puede verse. Puede estar explicado en teoría, sin embargo, porque cabe ver los resultados de
magnetismo y reconocer las acciones que causa.
Un tipo de mineral de hierro, un tipo de Piedra Imán designada, existe como un imán en naturaleza. Vea
6-1 de la Figura.
Muchos otros materiales pueden ser artificialmente magnetizados hasta cierto punto, dependiendo de su
contenido de estructura atómica o de hierro. Los metales que no contienen planchan, metales poco ferrosos
designados, no pueden ser magnetizados. Los metales que contienen planchan, metales ferrosos designados,
pueden ser magnetizados. El hierro dulce, que tiene carbón bajo contenido, es muy fácil para magnetizar. Los
metales Nonferrous, como aluminio, y elementos no metálicos, como vaso, la madera, y el plástico, no pueden ser
magnetizados en absoluto.
TECH DELE PROPINA
Un Magnet Chiflado Se Convierte en Dos Imanes
Los imanes están comúnmente usados en cigüeñal del vehículo, árbol de levas, y rotan sensores de velocidad. Si un
imán está herido y se raja o se quiebra, el resultado es dos imanes de fuerza más pequeña. Porque la fuerza del
campo magnético se acorta, el voltaje de salida del sensor se acorta también. Un problema típico ocurre cuando un
sensor magnético del cigüeñal se vuelve agrietado, resultante en una ninguna condición de principio. Algunas
veces el sensor agrietado surte efecto bastante bien para echar a andar un motor que hace girar en las velocidades de
normalidad pero no surtirá efecto cuando el motor esté frío. Vea 6-2 de la Figura.
Las Líneas de Fuerza
Las líneas que crean un campo de fuerza alrededor de un imán - se cree - les son causados por el camino grupos de
átomos están alineados en el material magnético. En una barra imantada, las líneas son concentradas a ambos
extremos de la barra y la forma los lazos cerrados, paralelos en tres dimensiones alrededor del imán. La fuerza no
fluye a lo largo de estas líneas la corriente muy eléctrica fluye, pero las líneas tienen dirección. Se despojan de un
4
5
Los Vehículos Híbridos y Alternativos de Combustible
borde, o empujan con una pértiga, del imán y entran en el otro extremo; NUNCA se intersectan. Vea 6-3 de la
Figura.
Los fines de opuesto de un imán son llamados sus polos del norte y del sur. En realidad, deberían ser
llamados el "norte buscando" polos "que buscan" y "sur", porque buscan Polo Norte de la tierra y Polo Sur,
respectivamente.
Mientras más fuerte el imán, las más líneas magnéticas que se forma. Las líneas magnéticas de fuerza,
también llamaron líneas de fundente magnético o de fundente, forme un campo magnético. Los términos campo
magnético, líneas de fuerza, fundente, y las líneas de fundente son usados de forma intercambiable.
La densidad de fundente se refiere al número de líneas de fundente por unidad de área. Para determinar
densidad de fundente, divida el número de líneas de fundente por el área en el cual el fundente existe. Por ejemplo,
100 líneas de fundente divididas por un área de 10 los cuadran iguales de centímetros una densidad de fundente de
10. Un campo magnético puede ser medido usando un calibre de Gauss, puede ser llamado para científico alemán
Johann Carl Fredrick Gauss (1777 - 1855).
Las líneas magnéticas de fuerza pueden verse esparciendo muy bien limaduras de hierro o el polvo en una
hoja de papel proveyó parte superior de un imán. Un campo magnético también puede ser observado usando una
brújula. Una brújula es simplemente un imán delgado o una aguja de hierro magnetizada balanceada en un pivote.
La aguja girará para el punto hacia el polo opuesto de un imán. Puede ser muy sensitiva para los campos
magnéticos pequeños. Desde que es un imán pequeño, una brújula usualmente tiene un borde marcado N y la otra
S marcada. Vea 6-4 de la Figura.
TECH DELE PROPINA
5
6
Los Vehículos Híbridos y Alternativos de Combustible
Magnetice Una Aguja Acerada
Un pedazo de acero puede ser magnetizado frotando un imán en una dirección a lo largo del acero. Esto causa que
los átomos se pongan en fila en el acero, así es que actúa como un imán. El acero a menudo no permanecerá
magnetizado, mientras el imán verdadero es permanentemente magnetizado.
Cuando el hierro dulce o el acero es usado, como un clip, se desmagnetizará rápidamente. Los átomos en una aguja magnetizada pueden ser disturbados calentándolo o dejando
caer la aguja en un objeto duro, lo cual causaría que la aguja se desmagnetice. El hierro dulce es usado dentro de bobinas de ignición porque no retendrá su magnetismo.
Atrayendo La Atención o Repeliendo
Los polos de un imán son llamados norte (N) y sur (S) porque cuando un imán es suspendido libremente, los polos
tienen tendencia a apuntar hacia el norte y Hacia el Sur los Polacos de la tierra.
Las líneas magnéticas de fundente egresan del Polo Norte del imán y se doblan aproximadamente para
entrar en el Polo Sur. Un número igual de líneas egresa e introduce, así es que la fuerza magnética es iguales en
ambos polos de un imán. Las líneas de fundente son concentradas en los polos, y por eso la fuerza magnética (la
densidad de fundente) es más fuerte en los fines.
Los polos magnéticos se comportan como partículas positivamente y negativamente cargadas a la cuenta.
Cuando a diferencia de polos es colocado uno al lado del otro, las líneas egresan de un imán y entran en el otro.
Los dos imanes son juntados por líneas de fundente y los dos campos magnéticos se incorporan a lo convertido en lo
grande. Si como polos es colocado uno al lado del otro, el fundente corvo le aplica delineador a la cabeza
conveniente adelante, separando a la fuerza los imanes. Por consiguiente, guste los polos de un imán repelen y los
polos diferentes atraen la atención. Vea 6-5 de la Figura.
La permeabilidad
Las líneas magnéticas de fundente no pueden ser aisladas. No hay material conocido a través del cual la fuerza
magnética no pasa, si la fuerza es lo suficientemente fuerte. Sin embargo, algunos materiales dejan la fuerza pasar
sin embargo más fácilmente que otros. Este grado de pasaje es llamado permeabilidad. El hierro le da pasada a
las líneas magnéticas de fundente a través de mucho más fácilmente que aire, así es que hierro son muy permeables.
La renuencia
Mientras no hay aislador absoluto para el magnetismo, ciertos materiales resisten el pasaje de fuerza magnética.
Esto puede ser comparado con resistencia sin un circuito eléctrico. El aire no permite pasaje fácil, así es que el aire
6
7
Los Vehículos Híbridos y Alternativos de Combustible
tiene una renuencia alta. Las líneas magnéticas de fundente tienen tendencia a concentrarse en materiales
permeables y evitar materiales renuentes. Al igual que con electricidad, la fuerza magnética sigue el camino de
resistencia mínima.
El ELECTROMAGNETISMO
Los científicos descubrieron que conductores que conllevan corriente están también rodeados por un campo
magnético acerca de 1820. La creación de un campo magnético por el uso de una corriente eléctrica es llamada
electromagnetismo. Estos campos pueden estar hechos muchas veces más fuerte que esos imanes convencionales
circundantes. También, la fuerza magnética del campo alrededor de un conductor puede controlarse cambiando la
corriente. Como la corriente aumenta, más líneas de fundente son creadas y el campo magnético se incrementa.
Como la corriente se agota poco a poco, el campo magnético se contrae, o se derrumba. Estos descubrimientos
grandemente ensancharon los usos prácticos de magnetismo y abrieron un área de estudio conocido como la
electromagnética.
Creando Un Electromagneto
Un imán puede ser creado magnetizando un pedazo de hierro o acero o usando electricidad para hacer un
electromagneto. Una forma fácil para crear un electromagneto debe envolver una uña con 20 vueltas de alambre
aislado y conectar los cabos para las terminales de una batería de pila seca de 1.5 voltios. Estando energizada, la
uña se convertirá en un imán y podrá recoger tachuelas u otros objetos acerados pequeños.
TECH DELE PROPINA
La Electricidad y el Magnetismo
La electricidad y el magnetismo se relacionan estrechamente porque cada vez que una corriente eléctrica fluye a
través de un conductor, un campo magnético es creado. Cuando un conductor es movido a través de un campo
magnético, una corriente eléctrica es creada. Esta relación puede estar resumida como sigue:

· la electricidad crea magnetismo.

· el magnetismo crea electricidad.
De punto de vista de un técnico de servicio, esto es importante porque los alambres llevando corriente
siempre deberían ser encaminados como la fábrica intentase evitar causar interferencia con otro circuito o el
componente electrónico. Esto es especialmente importante al instalar o reparar tapón de la chispa envía un
7
8
Los Vehículos Híbridos y Alternativos de Combustible
telegrama, cuál conllevan altos voltajes y pueden causar una buena cantidad de interferencia electromagnética.
El Conductor Recto
El campo magnético rodeando un conductor que conlleva corriente recta, existe a lo largo de la longitud entera del
alambre. La fuerza de la corriente decide cuántos el fundente que las líneas allí serán y hasta dónde expulsa que se
extienden de la superficie del alambre. Vea 6-6 de la Figura.
La Regla de Mano Derecha
Los cilindros magnéticos de fundente tienen dirección, lo mismo que las líneas de fundente rodeando una barra
imantada tienen dirección.
La mayoría de circuitos automotores usan la teoría convencional de flujo actual -), y por eso la regla de
mano derecha se usa para determinar la dirección de las líneas magnéticas de fundente (+ para. Vea 6-7 de la
Figura.
La Interacción del Campo
Los cilindros de fundente rodeando conductores que conllevan corriente le interactúan otros campos magnéticos.
En las siguientes ilustraciones, el símbolo cruzado (+) indica corriente moviéndose hacia dentro, o fuera de usted.
Representa la cola de una flecha. El símbolo del punto (• ) representa una punta de flecha e indica corriente
moviéndose hacia afuera. Si dos conductores llevan corriente adentro al frente de direcciones, sus campos
magnéticos también llevan corriente adentro al frente de direcciones. Si son colocados paralelas, las líneas de
fundente contrario entre los conductores crean un campo magnético fuerte. Conductores que conllevan corriente
tienden a mudarse de un campo firme en un campo débil, así es que los conductores se quitan el uno del otro. Vea
6-8 de la Figura.
Si los dos conductores llevan corriente en la misma dirección, sus campos están en la misma dirección.
Las líneas de fundente entre los dos conductores cancelan mutuamente fuera, que sale uno campo muy débil entre
ellas. Los conductores están dibujados en este campo débil, y tienden a moverse hacia cada quien.
Impulse Principio
8
9
Los Vehículos Híbridos y Alternativos de Combustible
Los motores eléctricos, como los motores del arrancador del automóvil, usan esta interacción del campo para
cambiar energía eléctrica en la energía mecánica. Si acarreo de dos conductores actual en direcciones opuestas es
colocado entre fuertemente del norte y polos del sur, el campo magnético del conductor le interactúa los campos
magnéticos de los polos. El campo que gira en sentido del reloj del conductor sobresaliente agranda los campos de
los polos y crea un campo firme debajo del conductor. El conductor luego intenta ascender para salir de este campo
firme. El campo que gira contrario al reloj del conductor inferior agranda el campo de los polos y crea un campo
firme por encima del conductor. El conductor luego intenta moverse hacia abajo para salir de este campo firme.
Estas fuerzas causan el centro del motor, donde los conductores son montados, para cambiar de dirección en sentido
de las manecillas del reloj. Vea 6-9 de la Figura.
El Conductor de la Bobina
Si varios lazos de alambre son convertidos en una bobina, la densidad magnética de fundente es intensificada. Las
líneas de fundente alrededor de una bobina equivalen a las líneas de fundente alrededor de una barra imantada. Vea
6-10 de la Figura.
Egresan del Polo Norte y entran en el Polo Sur. El campo magnético de una bobina puede ser
intensificado aumentando el número de vueltas en el alambre, aumentando la corriente a través de la bobina, o
ambos.
Los electromagnetos
El campo magnético rodeando un conductor que conlleva corriente puede ser fortalecido usando un corazón suave
de hierro. Porque el hierro dulce es muy permeable, las líneas magnéticas de fundente lo atraviesan fácilmente. Si
un pedazo de hierro dulce es metido adentro de un conductor enroscado, las líneas de fundente se concentran en el
corazón de hierro, en vez de paso a través del aire, cuál es menos permeable. La concentración de fuerza
grandemente aumenta la fuerza del campo magnético dentro de la bobina. Las bobinas con un corazón de hierro
son llamadas electromagnetos. Vea 6-11 de la Figura.
La INDUCCIÓN ELECTROMAGNÉTICA
Las líneas magnéticas de fundente pueden crear una fuerza electromotriz, o un voltaje, en un conductor si ya sea el
9
10
Los Vehículos Híbridos y Alternativos de Combustible
fundente le aplica delineador o el conductor se mueve. Este movimiento es llamado movimiento relativo. En
otras palabras, hay movimiento relativo entre el fundente le aplica delineador y el conductor. Este proceso es
llamado conscripción, y la fuerza electromotriz resultante es llamada voltaje inducido. Esta creación de un voltaje
en un conductor por un campo magnético emocionante es llamada inducción electromagnética. Si el conductor
está en un circuito completo, la corriente fluye.
El voltaje es inducido cuando las líneas magnéticas de fundente están quebradas por un conductor. Este
movimiento relativo puede ser un conductor moviéndose a través de un campo magnético o un campo magnético
moviéndose a través de un conductor estacionario (como en alternadores y bobinas de ignición). En ambos casos,
el voltaje inducido es generado por el movimiento relativo entre el conductor y el fundente magnético le aplica
delineador a. El voltaje más alto es generado cuando el movimiento está en ángulos correctos. Vea 6-12 de la
Figura.
La Fuerza de Voltaje
El voltaje inducido depende de líneas magnéticas de fundente estando quebrado por un conductor. La fuerza del
voltaje depende de la tasa en la cual las líneas de fundente están quebradas. El más fundente le aplica delineador a
quebrado por unidad de tiempo, lo más gran el voltaje inducido. Si un conductor solo rompe un millón fundente le
aplica delineador por segundo, un voltio es inducido.
Hay cuatro formas para aumentar voltaje inducido:
 · aumente la fuerza del campo magnético, tan hay más líneas de fundente.

· aumente el número de conductores que rompen las líneas de fundente.

· aumente la velocidad del movimiento relativo entre el conductor y las líneas de fundente a fin de
que más líneas estén quebradas por unidad de tiempo.

· aumente el ángulo entre las líneas de fundente y el conductor para un máximum de 90 grados.
No hay voltaje inducido si los conductores se mueven paralelamente para, y no quebrantan a
cualquier, funden líneas, como se muestra en 6-13 de la Figura.
El máximo voltaje es inducido si los conductores rompen líneas de fundente en 90 grados y las
disminuciones de voltaje cuando las líneas de fundente están cortadas en ángulos entre 0 y 90 grados. Vea 6-14 de
10
11
Los Vehículos Híbridos y Alternativos de Combustible
la Figura.
El voltaje puede ser electromagnéticamente inducido, y puede ser medido. El voltaje inducido crea
corriente. La dirección de voltaje inducido (y la dirección en la cual la corriente se mueve) es llamada polaridad y
depende de la dirección de las líneas de fundente, así como también la dirección de movimiento relativo.
Una corriente inducida se mueve a fin de que su campo magnético se opone al movimiento tan inducido la
corriente. Este principio es llamado la ley de Lenz. El movimiento relativo entre un conductor y un campo
magnético está opuesto por el campo magnético de la corriente que ha inducido.
Los MOTORES ELÉCTRICOS
El poder eléctrico del motor es expresado en kilovatios (kW). Éste es el estándar internacional preferido para
evaluar poder mecánico y eléctrico. Un motor de 100 % de eficiente produciría un kilovatio de poder mecánico con
un aporte de un kilovatio de poder eléctrico. Un kilovatio es igual a 1,000 vatios. Un vatio es la cantidad de poder
que levantaría un objeto pesando 3.6 onzas (102 gramos) una distancia de 39 pulgadas (un metro) en un segundo.
La escala de vatio de medida de poder lleva el nombre del ingeniero escocés James Watt. Un hp es igual a 746
vatios. La valuación del hp fue desarrollada por el Vatio a finales de los 1700s cuando los caballos fueron la fuente
de la cañería maestra de poder. El vatio quiso que una forma exprese la cantidad de poder disponible de máquinas
de vapor en los términos que podrían fácilmente ser comprendidos. Haciendo algunos experimentos simples, él
determinó que 550 libras de pie por segundo fueron el poder producido por un caballo común. Esto quiere decir
que el caballo podría levantar que un peso de 550 libras de un hacen el pie de en el un segundo.
El Caballo De Fuerza para Gráfica de Conversión Kilowatt
El caballo de fuerza (hp)
El kilovatio (kW)
25
19
50
37
75
56
100
75
125
93
150
112
11
12
Los Vehículos Híbridos y Alternativos de Combustible
175
131
200
149
La Operación Eléctrica del Motor
La mayoría de motores eléctricos surten efecto por el electromagnetismo y el principio básico que hay una fuerza
mecánica en cualquier alambre cuando transmite electricidad mientras es contenida dentro de un campo magnético.
La fuerza está descrita por la ley de fuerza Lorentz y es perpendicular para ambos el alambre y el campo
magnético.
En un motor eléctrico, la parte rotativa (usualmente por dentro) es llamada el rotor, y la parte estacionaria
es llamada el estator. El motor contiene electromagnetos que son herida en un marco. Un principio básico de
electromagnetismo es que un campo magnético rodea a cada conductor llevando una corriente. La fuerza del
campo magnético es aumentada como el flujo actual (en los amperios) sea aumentado.
Dentro de la vivienda del arrancador está un campo fuertemente magnético creado por los imanes de la
bobina del campo. El inducido, hecho de muchos conductores, es interior instalado este campo magnético fuerte,
con despejo del muy poco entre el inducido y el campo arrolla.
Los dos campos magnéticos actúan juntos, y sus líneas de fuerza "se agrupan arriba" o son fuertes adelante
un lado del alambre del lazo del inducido y se debilitan adelante el otro lado del conductor. Esto causa que el
conductor (el inducido) se mueva del área de fuerza magnética fuerte del campo hacia el área de fuerza magnética
débil del campo.
Esto causa que el inducido gire. Esta rotación que la fuerza (la fuerza de torsión) aumenta como la
corriente fluyendo a través del motor del arrancador aumenta. La fuerza de torsión de un arrancador es determinada
por la fuerza de los campos magnéticos. La fuerza magnética del campo es medida en vueltas de amperio. Si la
corriente o el número de vueltas de alambre es aumentada, la fuerza magnética del campo es aumentada. Vea 6-15
de la Figura.
Uno de los primeros motores rotativos electromagnéticos fue inventado por Michael Faraday en 1821. El
12
13
Los Vehículos Híbridos y Alternativos de Combustible
motor clásico de CD usa un inducido rotativo en forma de un electromagneto con dos polos. Un interruptor rotativo
llamó que un conmutador pone al revés la dirección de la corriente eléctrica dos veces a cada ciclo, para fluir a
través del inducido a fin de que los polos del electromagneto empujen y tiren en contra de los imanes permanentes
en el exterior del motor. Como los polos del electromagneto del inducido pasan los polos de los imanes
permanentes, el conmutador pone al revés la polaridad del electromagneto del inducido. Durante ese instante de
cambiar polaridad, la inercia mantiene operando el motor en la dirección correcta. Un motor típico de CD hoy usa
cuatro polos, como se muestra en 6-16 de la Figura.
Cuando la bobina está accionada en un motor eléctrico simple, un campo magnético es generado alrededor
del inducido. El lado izquierdo del inducido es apartado a la fuerza del imán izquierdo y se traza hacia la derecha,
causando rotación. El inducido continúa girando. Cuando el inducido se vuelve horizontalmente aliado, el
conmutador pone al revés la dirección de corriente a través de la bobina, poniendo al revés el campo magnético. El
proceso luego repite.
La velocidad del motor de CD generalmente depende de una combinación del voltaje y la corriente
fluyendo en las bobinas motoras y la carga motora o frenando fuerza de torsión. Lo siguiente es los principios
básicos de un motor típico de CD:

· la velocidad del motor es proporcional para el voltaje aplicado.

· la

· la velocidad se controla típicamente alterando el voltaje o corriente fluye acostumbrando golpea ligeramente en los serpenteos motores o usando un suministro variable de
fuerza de torsión es proporcional para la corriente aplicada.
voltaje.
La velocidad también puede controlarse usando un circuito electrónico que cambia el voltaje del suministro abierto y cerrado mismo rápidamente. Como lo "adelante" para el
tiempo "feriado" es variado para alterar el voltaje aplicado promedio, la velocidad del motor difiere. El uso de cepillos en un motor eléctrico tiene muchos disadvantges incluyendo:
1
1.
Cualquier arcing de los cepillos también causa
ruido eléctrico, lo cual puede causar problemas serios con
los elctronics en el vehículo.
2
2.
Los cepillos eventualmente se desgastan y requieren al reemplazo. Esto agranda el
mantenimiento costado del vehículo y podría resultar en la dissatisfación del cliente debido al
fracaso motor y / o el costo consistió en reemplazo del cepillo.
LA PREGUNTA FRECUENTEMENTE PREGUNTADA
¿Qué Es un "motor de tracción" y una "máquina eléctrica"?
Un motor de tracción es un motor usado para propulsar un vehículo. La tracción de término proviene del término
13
14
Los Vehículos Híbridos y Alternativos de Combustible
de ingeniería que describe lo que debe ocurrir para que una rueda motriz gire y transfiera la fuerza de torsión de la
unidad de propulsión a las ruedas motrices. Al discutir vehículos eléctricos híbridos, en cualquier momento el
motor de tracción de término es usado, describe el motor eléctrico usado para propulsar el vehículo. La máquina
de término se usa comúnmente para describir un motor eléctrico porque es a menudo más que un motor simple y
requiere que controladores y otros componentes funcionen.
Los MOTORES BRUSHLESS
Hay dos tipos de motores eléctricos de brushless: El motor de conscripción de corriente alterna y la corriente
alterna motor sincrónico.
El motor de Conscripción de corriente alterna
Una conscripción de corriente alterna motora, tal cual usada en el paralelo General de Motores el camión híbrido
(PHT), usa inducción electromagnética del estator para inducir una corriente y por consiguiente crea un campo
magnético en el rotor sin que sea necesario para cepillos. Un motor de conscripción de corriente alterna está
también conocido como una corriente alterna motor asincrónico, o motor de conscripción de corriente alterna
(ACIM), porque permite una cierta cantidad de desliz entre el rotor y el campo magnético cambiante en el estator.
El término instrumento asincrónico que la velocidad del motor no es necesariamente relacionada con la frecuencia
de la corriente fluyendo a través de los serpenteos del estator. Los ACIMs incluyen jaula de ardilla y conscripción
del rotor bobinado
Los diseños.

· un rotor de la jaula de ardilla está compuesto cobre paralelamente grueso o los conductores de
aluminio se conectaron a un anillo del mismo material en los fines. Como el estator el campo
magnético alterna, el campo le interactúa el campo magnético establecido por los polos magnéticos del
rotor, causando el rotor para revolver en casi la velocidad del estator rotativo campo magnético. Vea
6-17 de la Figura.

· un diseño alterno es llamado el rotor bobinado. En este caso, el rotor tiene el mismo número de
polos como el estator, y los serpenteos están hechos de alambre. Cuando el estator que el campo
magnético rota y los serpenteos del rotor son puestos en cortocircuito, el estator movimiento del campo
magnético induce un campo en el rotor bobinado, causando el rotor para revolver en casi la velocidad
14
15
Los Vehículos Híbridos y Alternativos de Combustible
del estator rotativo campo magnético. Vea 6-18 de la Figura.
El motor sincrónico de corriente alterna
La corriente alterna que el motor sincrónico rota exactamente en la frecuencia del suministro o un submúltiplo de la
frecuencia del suministro. La velocidad se controla variando la frecuencia del suministro de corriente alterna y el
número de polos en el estator serpenteando, según la relación:
RPM 120F ÷ p
Donde
La velocidad RPM = Synchronous
La frecuencia de poder de = corriente alterna de la F
La p = Number de polos, usualmente un número par pero siempre un múltiplo de lo
El número de fases
Un circuito electrónico de alternación produce corrientes que conmuta en los serpenteos del estator basados
en la posición de los polos magnéticos en el rotor. El rotor del motor gira en la misma velocidad como el abono del
estator. La velocidad del motor es controlada por la frecuencia de la corriente de corriente alterna siendo usada.
Los rotores del imán permanente. Los motores Brushless, cuál usan rotores del imán permanente, producen alto
momento de torsión de arranque y son típicamente encima 90 % eficiente. Los motores del imán permanente
Brushless usan dos diseños de rotores:
1.
En un tipo, los imanes permanentes son del rotor en el corazón del rotor. Éstos son llamados unos
imanes permanentes de la superficie (SPMs). Vea 6-19 de la Figura.
1.
En el otro tipo, los imanes permanentes son interior alojado la concha exterior del rotor y
son llamados imanes permanentes interiores
(IPMs). La Honda Accord, hybrids Ford, y Toyota Hybrids usan una asamblea del rotor de
15
16
Los Vehículos Híbridos y Alternativos de Combustible
IPM-TYPE.
En ambos tipos de motores, las bobinas del estator son estacionarias y la asamblea del imán permanente alterna. La corriente alterna (la corriente alterna) es alimentada para las
fases de varous en el estator para meter los imanes permanentes en el rotor "perseguir" el campo magnético cambiante. Vea 6-20 de Figuras y 6-21.
La corriente es alimentada en una de las tres fases del estator y mana de una segunda fase. Esta corriente
fluye a través de las fases, actúa como un sensor de la posición, y le ayuda al controlador a decidir cuándo energizar
cuál fase del estator. Éste es algunas veces llamado un diseño del motor de CD sin sentido.
LA PREGUNTA FRECUENTEMENTE PREGUNTADA
¿Es Eso una CD o un Motor de corriente alterna?
El vehículo híbrido Honda los estados relacionados en ventas de información que el motor eléctrico usó en una
Honda ayudar a propulsar el vehículo es un "motor de brushless de CD". Sin embargo, un motor de CD es
usualmente controlado por una anchura de pulso señal modulada (PWM) del controlador motor, así es que es de
hecho un motor sincrónico de corriente alterna. ¿Por qué es eso llamada una CD motor? Algunos ingenieros del
campo han indicado que es más probable debido a comercializar le concierne. Si el motor de corriente alterna de
término fuese usado, entonces algunas personas pensarían que el vehículo tiene que ser taponado en una corriente
alterna conexión de salida eléctrica. La corriente alterna es creada usando un invertidor, lo cual cambia CD actual
de las baterías para corriente alterna actual para usar antes del motor eléctrico. Muchos compradores del vehículo
pudieron estar confundidos por esta explicación técnica, así el uso del motor de brushless de CD de término o algún
otro término genérico es usado en la literatura de ventas.
LA PREGUNTA FRECUENTEMENTE PREGUNTADA
¿Cuántos los Motores Electric Están en un Vehículo Hybrid?
Hay nueve motores eléctricos, algunas veces que se repita, en la mayoría de vehículos híbridos. Estos incluyen:
1. Uno o dos motor de paseo en coche (s)
2. El motor para circular el líquido de refrigeración durante el alto sin valor para resguardar del frío a los
pasajeros
(Toyotas/Honda Conceda / Honda Cívico)
3. El motor para la dirección asistida eléctrica (los discos de corta duración) (todo)
4. El motor para compresor A/C
16
(el Nuevo Prius y Acuerdo)
17
Los Vehículos Híbridos y Alternativos de Combustible
5. El motor para enfriar a CVT (el Ford / Toyota/Lexus)
6. El motor para EN (el Acuerdo híbrido, la General Motors PHT, y Saturno VUE)
7. El motor (s) para enfriar por aire las baterías HV (todo)
8. El motor para dirección asistida hidroeléctrica (la General Motors 42/36v)
9. El motor en CVT para embragar parque (2004 + Prius)
10. Erija diferencial (Lexus RX400h Highlander 4WD)
LA PREGUNTA FRECUENTEMENTE PREGUNTADA
¿Por qué las Potencias Nominales Son para los Motores de Explosión Más Alto Que Motores Eléctricos?
Hay dos razones básicas por qué los motores de combustión internos, la gasolina y diesel, son usualmente evaluados
más altos en el poder que motores eléctricos.
1. La valuación de caballo de fuerza del motor de explosión es el máximo poder que puede ser
Producido.
2. La valuación de caballo de fuerza de un motor eléctrico es típicamente dada como la cantidad de poder
Eso puede ser redimido en primer lugar la hora continua sin sobrecalentarse.
Además de la diferencia de adentro cómo es la potencia nominal lograda, el poder eléctrico del motor está
usualmente expresado en kilovatios. Hay 1,000 vatios en un kilovatio, y 746 vatios es igual a un caballo de fuerza.
Por consiguiente, un 30-kW (de 30,000 vatios) motor eléctrico es capaz de producir acerca de 40 caballo de fuerza.
TECH DELE PROPINA
Los Motores Eléctricos Son Perfectos para Vehículos
Una gasolina o un motor Diesel produce muy poca fuerza de torsión y el poder en el punto bajo acelera y debe usar
una transmisión para multiplicar fuerza de torsión poner en movimiento el vehículo. Un motor eléctrico, como un
motor de conscripción de corriente alterna, la fuerza de torsión de máximum de productos en las velocidades bajas,
haciéndolo la fuente perfecta de poder para poner en movimiento un vehículo de un alto. Luego, cuando la fuerza
de torsión de un motor eléctrico comienza a decaer, la fuerza de torsión multiplicado por la velocidad (RPM) da
como resultado poder. Por consiguiente, un motor eléctrico típico usado en un vehículo híbrido tiene las siguientes
17
18
Los Vehículos Híbridos y Alternativos de Combustible
características:

· da constante fuerza de torsión en la velocidad baja, típicamente desde cero para 1,500 RPM

· da constante poder por encima de 1,500 RPM (vea Figura 6-22)
.
Por ejemplo, el motor eléctrico trasero usado en una Toyota Highlander tiene las siguientes
especificaciones:
La salida de poder:
123 kW @ 4,500 RPM (167 hp)
La máxima fuerza de torsión:
247 lb.ft. @ 0 para 1,500 RPM
La conscripción transporta por vehículo en reposo levadizo uno corriente muy alta conocido como la
corriente cerrada del rotor. También producen fuerza de torsión, lo cual es sabido como la fuerza de torsión
cerrada (LRT) del rotor. Como el motor acelera, ambos la fuerza de torsión y la corriente tendrán tendencia a
cambiar con velocidad del rotor si el voltaje es mantenido en un constante nivel.
La puesta en marcha actual de un motor, con un voltaje fijo, descenderá muy lentamente como el motor
acelera y sólo comenzará a caer cuando el motor ha alcanzado al menos 80 % a toda velocidad.
Típicamente, la eficiencia de un motor de conscripción es mayor que 92 % para motores de alta velocidad,
tan tal cual acostumbró en vehículos híbridos eléctricos.
IMPULSE CONTROL
Un ejemplo de control del motor de tracción es el módulo de control (MCM) motor usado en vehículos eléctricos
híbridos Honda, lo cual es típico del controlador utilizado en la mayoría de vehículos eléctricos híbridos. El MCM
tiene tres aportes de tres sensores de la posición del rotor, A, B, y C. Le envían la información digital al MCM
indicar rotor posición angular. El MCM es sistemático para usar esta información para decidir cuáles circuitos del
conductor en la unidad de paseo en coche de poder (PDU) deberían encenderse. El PDU controla todas las
funciones del motor, ya sea produce fuerza de torsión para conducir el vehículo o es utilizado como un generador
para cargar a la cuenta las baterías durante el frenado regenerativo.
18
19
Los Vehículos Híbridos y Alternativos de Combustible
El MCM tiene tres salidas: U, V, y W. Cada serpenteo envía la información de control (el punto bajo alto
digital) a la unidad de paseo en coche de poder (PDU). Vea 6-23 de la Figura.
Estos tres aportes distinguen que el PDU que de los transistores de poder cambie de dirección adelante para
volver actual a través de los serpenteos del estator y continúan rotación del rotor.
Una típica Honda PDU esquemático es mostrada en 6-24 de la Figura.
El acomodamiento de transistores y diodos da como resultado control de tres fases del motor eléctrico para
ambos traslado el vehículo (ayude) y recargando el paquete de la batería. El flujo actual a través del PDU es
controlado por seis entrada aislada transistores bipolares (IGBTs). Tres de estos transistores controlan el voltaje
lateral del circuito y son llamados IGBTs positivos o altos y laterales. Los otros tres transistores son IGBTs
negativos o laterales en punto bajo porque están en el lado negativo (la tierra) de las bobinas de estatores. La base
de cada IGBT se conecta a una terminal de entrada en el conector para el PDU. Los IGBTs son conductores
actuales que envían corriente del paquete de la batería a través de los serpenteos del estator para energizar el estator
arrolla y maniobra el rotor para energizar las ruedas motrices. La mayoría de controladores motores incluyen
sensores de la corriente de Hall-Effect. Vea 6-25 de la Figura.
Cada IGBT tiene un diodo conectado de adentro paralelamente entre el coleccionista y el emisor. Estos
seis diodos surten efecto juntos para rectificar corriente alterna del estator para CD palpitante para cargar a la cuenta
las baterías de alto voltaje cuando el motor del accionamiento eléctrico de CD se convierte en un generador durante
el frenado regenerativo. En aquel entonces, los IGBTs son instantáneamente cerrados por el módulo motor (MCM)
de control para dejar de energizar la CD motor eléctrico de paseo en coche. Porque el HEV todavía se mueve hacia
adelante, el cigüeñal gira, lo cual rota el rotor del imán permanente (el inducido) en el motor del accionamiento
eléctrico de CD. La rotación del rotor causa que las líneas de fundente de los imanes permanentes energéticos
induzcan una corriente alterna actual en las bobinas del estator. Los seis diodos están adelante vuelta parcial y de
adelante para rectificar la corriente de corriente alterna inducida en las bobinas del estator para CD palpitante para
recargar el paquete de la batería.
La información de la posición del rotor es enviada al MCM, lo cual está programado para encender los
IGBTs correctos para mantener el rotor cambiando de dirección. Es crítico que el controlador sepa la posición
19
20
Los Vehículos Híbridos y Alternativos de Combustible
exacta del rotor.
Los IGBTs procesan paseo en coche actual para el motor eléctrico de paseo en coche. Los diodos forman
un puente del rectificador para cambiar la corriente alterna generada en el accionamiento eléctrico motor para CD
palpitante para cargar a la cuenta el paquete de la batería. Vea 6-26 de la Figura.
Toyota y Lexus usan un sensor de velocidad designado un resolvente para detectar la posición del rotor.
Vea 6-27 de Figuras y 6-28.
Enfriando la Electrónica
El flujo actual y los dispositivos electrónicos en unidades eléctricas híbridas de control generan una buena cantidad
de calor. Toyota, Ford, y hybrids de la General Motors usan un método líquido de enfriamiento para controlar la
temperatura de la electrónica. Vea 6-29 de la Figura.
LOS CONDENSADORES EN CONTROLADORES HÍBRIDOS
Capacitance es la habilidad de un objeto o una superficie para almacenar un cargo eléctrico. En 1745, Ewald
Christian Von Kliest y furgoneta Pieter Musschenbroek independientemente descubrieron capacitance en un circuito
eléctrico. Estando ocupados en los estudios de la separata de electrostática, descubrieron que una carga eléctrica
podría guardarse para un período de tiempo.
Un condensador consta de dos platos conductivos con un material aislante entre ellos. El material aislante
es comúnmente designado uno dieléctrico. Puede ser aire, mica, cerámico, el vaso, el periódico, el plástico, o
cualquier material poco conductivo y similar. Mientras más alto el número constante dieléctrico de un material, lo
que mejor está como un aislador.
El material
La Constante
Dieléctrica
El vacío
1.0
El aire
1.00059
20
21
Los Vehículos Híbridos y Alternativos de Combustible
El poliestireno
2.5
El periódico
3.5
La mica
5.4
El cristal de roca
9.9
El alcohol metílico
35
La glicerina
56.2
El agua puro
81
Cuando un condensador está colocado en un circuito cerrado, la fuente de voltaje, como una batería, le
fuerza electrones alrededor del circuito. Porque los electrones no pueden fluir a través de lo dieléctrico del
condensador, la colecta excedente de electrones en lo que se convierte en el plato negativamente cargado a la cuenta.
Al mismo momento que el otro plato pierde electrones, y por consiguiente se vuelve positivamente cargado a la
cuenta. Vea 6-30 de la Figura.
La corriente continúa hasta el cargo de voltaje a través de los platos del condensador se convierte en así
como el voltaje de la fuente. En aquel entonces, el plato negativo del condensador y la terminal negativa de la
batería están en el mismo potencial negativo. Vea 6-31 de la Figura.
El plato positivo del condensador y la terminal positiva de la batería están también en potenciales positivos
iguales. Hay luego un cargo de voltaje a través de las terminales de la batería y un cargo igual de voltaje a través
del condensador chapa. El circuito está en balance, y no hay corriente. Un campo electrostático ahora existe entre
los platos del condensador por sus cargos de opuesto. Es este campo que almacena energía. Vea 6-32 de la
Figura.
Si el circuito es abierto, el condensador mantendrá su cargo hasta que esté conectado en un circuito externo
a través del cual puede descargarse. Cuando el condensador cargado a la cuenta está relacionado a un circuito
externo, se descarga. Después de descargarse, ambos platos del condensador son neutrales porque todo lo que la
energía de un el circuito almacenó en un condensador es devuelto cuando es exonerada. Vea 6-33 de Figuras y
6-34.
21
22
Los Vehículos Híbridos y Alternativos de Combustible
Teóricamente, un condensador puede mantener su cargo indefinidamente. Realmente, el cargo lentamente
se filtra fuera del condensador a través de lo dieléctrico. Mientras mejor lo dieléctrico, más largo el condensador
mantiene su cargo. Cuándo la ignición de un HEV es apagada, los fabricantes del vehículo dan aviso que usted
debe esperar 5 para 10 minutos para los condensadores para descargar antes de reparar el sistema de alto voltaje.
Mientras estos condensadores a menudo desembocan en menos de cinco minutas, es sabio para esperar la cantidad
de tiempo especificado por el fabricante del vehículo. Vea 6-35 de la Figura.
______________________________________________________________________________
CUIDADO: Para evitar un golpe de corriente, cualquier condensador debería ser tratado como si fuera
cargado a la cuenta hasta que se pruebe que es muerto.
______________________________________________________________________________
______________________________________________________________________________
NOTA: Los condensadores son también llamado condensadores. Este término desarrollado porque
cargos eléctricos colecciona, o se condensa, en los platos de un mucho del condensador les gustan las
colectas del vapor de agua y condensen en un vaso o botella fría.
______________________________________________________________________________
Capacitance es comedido en faradios, lo cual lleva el nombre de Michael Faraday (1791-1867). El símbolo
para los faradios es F. Si un cargo de 1 culombio está puesto en los platos de un condensador y la diferencia
potencial entre ellos es 1 voltio, el capacitance está entonces definido para ser 1 faradio. Un culombio es igual al
cargo de 6.25 × 1018 electrones. Un faradio es una cantidad sumamente grande de capacitance. Microfarads
(0.000001 el faradio), µ F abreviada, está más comúnmente usado.
El capacitance de un condensador es proporcional para la cantidad de cargo que puede guardarse en eso
para cada diferencia de voltio en el potencial entre sus platos:
C=Q÷V
Donde la C es capacitance en faradios, Q es la cantidad de cargo eléctrico almacenado en culombios, y V es
la diferencia en el potencial en voltios.
22
23
Los Vehículos Híbridos y Alternativos de Combustible
Por consiguiente, la carga eléctrica almacenada puede estar calculada usando la fórmula:
Q=CV
Los amortiguadores
Los amortiguadores son condensadores y los reostatos organizados en un circuito para controlar las oleadas de altos
voltajes que pueden ocurrir cuándo los circuitos conteniendo bobinas son cambiados de vez en cuando. Porque el
interruptor está siendo protegido, esto da como resultado fiabilidad superior, eficiencia superior, la frecuencia más
alta de alternación, la talla más pequeña, el peso inferior, y la interferencia electromagnética inferior (EMI). Vea
6-36 de Figuras y 6-37.
LOS CONVERTIDORES e INVERTERS
Los convertidores
Los convertidores CD A CD (el convertidor DC-DC usualmente escrito) son dispositivos electrónicos usados para
transformar voltaje de CD de un nivel de voltaje de CD para otro nivel más alto o inferior. Se usan para distribuir
niveles diversos de voltaje de CD a todo lo largo de un vehículo de un autobús solo (o la fuente de voltaje) de poder.
Un ejemplo de un circuito del convertidor DC-DC es el circuito el PCM suele convertir 14 V para 5 V.
Los 5 voltios son llamados el voltaje de referencia, V-Ref abreviada, y se usan para energizar muchos sensores en
un sistema de la gerencia del motor controlado por computadora. Lo esquemático de una V-Ref de 5 voltios típica
interconectando con el circuito del sensor TP es mostrado en 6-38 de la Figura.
El PCM opera en 14 voltios y usa el principio de conversión de CD para proveerle un constante voltaje de
referencia del sensor de 5 voltios al sensor TP y otros sensores. El sensor TP exige poca corriente, así es que el
circuito de V-Ref es un convertidor de DC-VOLTAGE de poder bajo en el rango de un vatio. El PCM usa que un
convertidor DC-DC que es un pequeño dispositivo semiconductor llamó un regulador de voltaje y es diseñado para
convertir voltaje de la batería para una constante 5 voltios a pesar de los cambios en el voltaje embestidor.
Los vehículos eléctricos híbridos usan convertidores DC-DC para proveer más alto o niveles inferiores de
voltaje de CD y requisitos actuales.
Un convertidor de poder DC-DC alto esquemático es mostrado en 6-39 de la Figura; Esto representa cómo
23
24
Los Vehículos Híbridos y Alternativos de Combustible
surte efecto un convertidor DC-DC.
El componente central de un convertidor es un transformador que físicamente aísla el aporte (42 V) de la
salida (14 V). El transistor de poder pulsa la bobina de alto voltaje del transformador; El campo magnético
cambiante resultante induce un voltaje en los serpenteos de la bobina del lado de voltaje inferior del transformador.
Los diodos y los condensadores ayudan a controlar y limitar el voltaje y la frecuencia del circuito.
Convertidor DC-DC Circuit Experimentando
Usualmente un voltaje de control de CD es usado que sea suministrado por un circuito lógico digital para
intercambiar el nivel de voltaje para controlar el convertidor. Una prueba de voltaje puede indicar si los voltajes
correctos son presentes cuando el convertidor está de vez en cuando.
Las medidas de voltaje son usualmente especificadas para diagnosticar un sistema del convertidor DC-DC.
Un multimetro digital (DMM) que es CAT III III-RATE debería ser usado.
_____________________________________________________________________________
La ADVERTENCIA: Siempre siga las precauciones de seguridad del fabricante para descargar
condensadores en circuitos del convertidor DC-DC.
______________________________________________________________________________
1.
Siempre siga las precauciones de seguridad del fabricante al surtir efecto con circuitos de alto voltaje.
Estos circuitos son usualmente indicados por naranja enviando un telegrama.
2.
Nunca conéctese con alambres en un circuito del convertidor DC-DC para acceder al poder para otro
circuito.
3.
Nunca conéctese con alambres en un circuito del convertidor DC-DC para acceder a una tierra para otro
circuito.
4.
Nunca bloquee corriente de aire para un pozo receptor inagotable de calor del convertidor DC-DC.
5.
Nunca destine un pozo receptor inagotable de calor para una toma de tierra para un metro, alcance, o
conexión accesoria.
6.
Nunca conecte o desconecte un convertidor CD A CD mientras el convertidor está accionado arriba.
7.
Nunca conecte un convertidor CD A CD para una mayor fuente de voltaje que especificado.
Los invertidores
24
25
Los Vehículos Híbridos y Alternativos de Combustible
Un invertidor es un circuito electrónico que cambia CD (la CD) en corriente alterna (la corriente alterna). En la
mayoría de invertidores DC-AC, los transistores conmutativos - usualmente los transistores de efecto de campo
del semiconductor de óxido de metal (MOSFETs) se encienden alternativamente para los pulsos breves. Como
un resultado el transformador produce una salida modificada de la onda sinusoidal, en vez de una onda sinusoidal
verdadera. Vea 6-40 de la Figura.
El waveform producido por un invertidor no es la onda sinusoidal perfecta de corriente de corriente alterna
de toda la casa, pero es más bien más análogo una corriente de CD que pulsa que reacciona parecido a corriente
alterna de la onda sinusoidal en transformadores y en motores de conscripción. Vea 6-41 de la Figura.
Los motores de corriente alterna están accionados por invertidores. Un invertidor convierte el poder de
CD al poder de corriente alterna en el tamaño y frecuencia requerida. El invertidor consta de tres unidades de
medios puentes y el voltaje de salida es en su mayor parte creado por una técnica de modulación de anchura de
pulso (PWM). Las ondas de voltaje de tres fases son intercambiadas 120 ° el uno para el otro a impulsar cada uno
de las tres fases.
______________________________________________________________________________
La ADVERTENCIA: No toque las terminales de una batería que están usadas para energizar un invertidor.
Hay siempre un riesgo que esas terminales de la batería podrían dar una sacudida muy mayor de baterías a
solas, si un motor o un invertidor debería desarrollar una falla.
LA DIRECCIÓN ASISTIDA ELÉCTRICA
Unidades que timonean más poder eléctrico usan un motor eléctrico de CD de tipo de cepillo que opera en 12
voltios. Algunos dirigen de 42 voltios y usan a un controlador electrónico y una CD de brushless motora como un
accionador.
El poder eléctrico timoneando (los discos de corta duración), también llamó dirección asistida
eléctrica (EPAS), el sistema incluye los siguientes componentes e inputs/outputs:

· un motor de CD

· el engranaje desmultiplicador

· el sensor de fuerza de torsión
Veo 6-42 de la Figura para un ejemplo de un EPS utilizado en una segunda generación Prius.
25
26
Los Vehículos Híbridos y Alternativos de Combustible
Lo dirección asistida eléctrica (los discos de corta duración) se controla por el disco de corta duración ECU, lo cual calcula la cantidad de asistencia necesitada basada en el aporte
del sensor de fuerza de torsión de la dirección. El sensor de fuerza de torsión de la dirección es un sensor de poco contacto que detecta el movimiento y la fuerza de torsión se aplicó a la barra
de torsión. La barra de torsión se tuerce cuando el conductor ejerce fuerza de torsión para el timón, y la más fuerza de torsión le aplicó causa que la barra se tuerza más allá. Esto genera una
señal de voltaje más alto para el disco de corta duración ECU.
Vea 6-43 de la Figura.
El sensor de fuerza de torsión del eje de la dirección y el sensor de la posición del timón no son reparados separadamente el uno del otro o de la asamblea de la columna de
dirección. La asamblea de la columna de dirección no incluye la asamblea de la dirección asistida del motor y de módulo. El anillo de detección 1 y anillo de detección 2 son en los que se
encaramó en el eje de aporte, y anillo de detección 3 es en el que se encaramó en el eje de salida. El eje de aporte y el eje de salida están conectados por una barra de torsión. Cuando el
timón es revuelto, la diferencia en el movimiento relativo entre anillos de detección 2 y 3 son sentidos por la bobina de detección y envían dos señales al disco de corta duración ECU. Estas
dos señales son llamadas Señal del Sensor de Fuerza de Torsión 1 y la Señal de Fuerza de Torsión 2. El disco de corta duración ECU usa estas señales para controlar la cantidad de asistencia y
también destina las señales para diagnóstico.
_____________________________________________________________________________
NOTA: Si el timón, la columna de dirección, o el mecanismo de dirección es distante o reemplazada, el
punto de cero de los sensores de fuerza de torsión debe ser vuelto a arrancar.
La Toyota Highlander y Lexus RX 400h usan una energía eléctrica diferente timoneando unidad debido a la talla más grande de los vehículos. Esta unidad usa un motor
concéntrico de CD de brushless en la percha de la dirección. Vea 6-44 de Figuras y 6-45.
Lo Honda la dirección asistida eléctrica usa un motor eléctrico para proveer timonear asistencia y
reemplaza la necesidad para una bomba hidráulica, mangueras, y engranaje. Un sensor de fuerza de torsión se usa
para medir resistencia de la carretera y la dirección que el conductor revuelve el timón. El aporte del sensor de
fuerza de torsión y la velocidad del vehículo es usado por el controlador de discos de corta duración para suplir los
discos de corta duración motores de la especificada corriente a ayudar a ayudar el esfuerzo de la dirección. Vea
6-46 de la Figura.
El motor revuelve el eje del piñón usando un engranaje del gusano. El engranaje del gusano está ocupado
con la rueda helicoidal a fin de que el motor revuelva el eje del piñón en seguida al proveer timonear asistencia. La
percha de la dirección es única porque las barras de la corbata son en las que se encaramó para el centro de la
26
27
Los Vehículos Híbridos y Alternativos de Combustible
percha en vez de en los fines de la percha tan en un acomodamiento convencional de la dirección asistida Honda.
Vea 6-47 de la Figura.
Si una falla principal ocurriera, el módulo de control primero intentará mantener dirección asistida aun si
algunos sensores han dejado de operar. Si el problema es serio, luego el vehículo puede ser conducido y timoneado
manualmente. Los discos de corta duración que la unidad de control revolverá en los discos de corta duración
arrojan lámpara indicadora si una falla ha sido detectada. Una falla en el sistema no causará que la luz indicadora
de funcionamiento defectuoso venga porque esa luz es confidencial para fallas relatadas en emisión sólo. Los
códigos de falla pueden ser recuperados usando una herramienta de tomografía, y los códigos serán exhibidos por lo
relampagueante de la lámpara de advertencia de discos de corta duración.
27
28
Los Vehículos Híbridos y Alternativos de Combustible
El RESUMEN
1.
Las líneas magnéticas de fuerza dejan el Polo Norte y entran en el Polo Sur de un imán.
2.
Las líneas magnéticas de fuerza son llamadas líneas de fundente.
3.
Cualquier conductor llevando una corriente eléctrica genera un campo magnético alrededor del conductor, y un
campo magnético emocionante a través de un conductor crea electricidad.
4.
Guste los polos repelan y a diferencia de polos atraiga la atención.
5.
Un motor de CD de brushless está también conocido como una corriente alterna motor sincrónico.
6.
Los imanes permanentes energéticos son usados en los rotores de la CD y los motores de brushless de corriente
alterna.
7.
La operación de motores es realizada por el controlador, lo cual es capaz de cambiar el voltaje y / o la
frecuencia de la corriente fluyendo a través de los serpenteos estacionarios del motor.
8.
Los convertidores DC-DC son usados en vehículos eléctricos híbridos para convertir la corriente de la batería de
alto voltaje en un voltaje inferior usado por los accesorios y los sistemas alumbrantes.
REVISE PREGUNTAS
1.
¿Cómo es una corriente eléctrica inducida en un alambre?
2.
¿Cómo una corriente alterna motor sincrónico surte efecto?
3.
¿Cómo impulsa una conscripción de corriente alterna trabajo?
4.
¿Cómo está la operación de unos brushless el motor de CD controlado?
5.
¿Qué es un convertidor DC-DC, y por qué es eso necesitado en un vehículo eléctrico híbrido?
28
29
Los Vehículos Híbridos y Alternativos de Combustible
El EXAMEN de CAPÍTULO
1. Todo el siguientes declaraciones son ciertas excepto.
a. Las líneas magnéticas de fuerza dejan el Polo Sur y entran en el Polo Norte
b. Alrededor de cada conductor llevando una corriente es un campo magnético
c. Las líneas magnéticas de fuerza nunca se intersectan
d. Mientras más alto la corriente a través de un conductor más fuerte el fundente magnético
2. La A del técnico dice ese toda CD que los motores usan pasa rozando. La B del técnico dice que sólo los
motores de corriente alterna son
Usado en vehículos eléctricos híbridos. ¿Cuál técnico está en lo correcto?
a. La A del técnico sólo
b.
La B del técnico sólo
c.
La A Technicians y B
d. Ni la A del Técnico Ni B
3. El poder de la mayoría de motores eléctricos es expresado adentro.
a. El caballo de fuerza
B kW
c. Los vatios
d. Los amperios
4. Los motores sincrónicos de corriente alterna usados en vehículos eléctricos híbridos acostumbran cómo muchos
serpenteos en lo
¿La parte estacionaria del motor?
a. Uno
b. Dos
c. Tres
d. Cuatro X
5. La A del técnico dice que un motor de tracción usado en un vehículo eléctrico híbrido se controla por ahí
Variando el voltaje para el motor. La B del técnico dice que la frecuencia de la corriente es
29
30
Los Vehículos Híbridos y Alternativos de Combustible
Controlado. ¿Cuál técnico está en lo correcto?
a. La A del técnico sólo
b.
La B del técnico sólo
c.
La A Technicians y B
d. Ni la A del Técnico Ni B
6. La A del técnico dice que un convertidor CD A CD se usa para convertir 12 voltios de la batería para uno
El voltaje superior para correr el motor eléctrico (s) en un vehículo eléctrico híbrido. La B del técnico dice eso
Un convertidor CD A CD se usa para convertir el voltaje del motor /generador a uno más alto
El voltaje para cargar a la cuenta las baterías de alto voltaje. ¿Cuál técnico está en lo correcto?
a. La A del técnico sólo
b.
La B del técnico sólo
c.
La A Technicians y B
d. Ni la A del Técnico Ni B
7. ¿La clase de motor eléctrico sirve para la tracción motora en la mayoría de vehículos eléctricos híbridos?
a. El motor de tipo de cepillo de CD
b. El motor de tipo de conscripción de corriente alterna
c. El motor de CD Brushless
d. La b y c son usadas
30
31
Los Vehículos Híbridos y Alternativos de Combustible
8. Lo se usa para rectificar corriente alterna para corriente de CD.
a. Los transistores
b. Los diodos
c. Los condensadores
d. Los condensadores
9. ¿Cuál es el tipo más común de rotor usado en un motor sincrónico de corriente alterna?
a. El alambre bobinado
b. El imán permanente
c. La jaula de ardilla
d. La b y c
10. Los sensores actuales son comúnmente usados por el controlador motor ayuda con las tareas de motor
La gerencia. ¿La clase de sensor usualmente sirve para esta tarea?
a. El efecto de vestíbulo
b. El potenciómetro
c. El puente Wheatstone
d. Piezoeléctrico
31