Download Guion Practica e_m FGII

Document related concepts

Relación masa carga wikipedia , lookup

Betatrón wikipedia , lookup

Tubo de rayos X wikipedia , lookup

Tubo de Crookes wikipedia , lookup

Magnetrón wikipedia , lookup

Transcript
Práctica 3
Relación carga/masa del electrón
I.-Objeto de la práctica:
Determinar la relación carga-masa de un electrón.
II.-Fundamento teórico:
Cuando una carga puntual q se mueve con velocidad v en el interior de un campo magnético B,
ésta experimenta una fuerza (fuerza de Lorentz) perpendicular al plano que contiene a v y a B
que tiene por módulo F = q v B sen φ.
Expresado vectorialmente:
r r
donde φ es el ángulo formado por los vectores v y B . Esta fuerza imprime a la partícula un
movimiento de rotación que, en el caso de que sen φ=1, se origina una circunferencia de radio
r. Es decir, cuando la velocidad es perpendicular al campo magnético, la desviación debida a la
fuerza de Lorentz provoca en la carga una trayectoria circular de radio r.
Si v y B son perpendiculares, la ecuación puede escribirse en forma escalar
Fm= e v B (1)
donde e es la carga del electrón y Fm es la fuerza debida al campo magnético
Si los electrones se mueven en círculo, deberán experimentar una fuerza centrípeta de
magnitud:
v2
Fc= m
(2)
r
donde m es la masa del electrón, v su velocidad y r el radio del círculo que describe.
Como la única fuerza que actúa sobre los electrones es la causada por el campo magnético,
Fm= Fc
y de las ecuaciones (1) y (2) se concluye que:
e
v
(3)
=
m Βr
Esta última expresión permite hallar el cociente carga/masa de una partícula midiendo el radio
de la trayectoria descrita por ésta cuando entra en un campo magnético B con velocidad v
perpendicular al mismo; en particular, para un electrón, el cociente entre su carga e y su masa
m. La primera medida de esta magnitud la realizó JJ. Thomson en 1897 en el laboratorio
Cavendish, de Cambridge.
1
Fig T
Thomson utilizo un aparato como el de la figura T, que consistía en un tubo de vidrio de alto
vacío en el que se aceleran los electrones provenientes del cátodo, debido a una alta diferencia
de potencial V entre los dos ánodos A y A'. La velocidad v de los electrones estaba
determinada por el potencial de aceleración V y hace que se forme un haz de electrones.
La energía cinética ½ m v2 es igual a la pérdida de energía potencial eléctrica eV donde e es la
magnitud de la carga del electrón y m la masa del electrón.
1 2
mv = e V
2
(4)
o bien
v=
2eV
m
(5)
En la figura T se observa que los electrones pasan entre las placas P y P' y chocan contra la
pantalla a final del tubo, que esta recubierta de un material que emite fluorescencia en el lugar
del impacto.
El aspecto más destacable de las mediciones de e/m de Thomson fue que descubrió un valor
único para tal cantidad, el cual no dependía del material del cátodo, ni del gas residual en el
tubo. Esta independencia demostró que las partículas en el haz, que posteriormente se llamaron
electrones, son un constituyente de la materia.
Thomson descubrió la primera partícula subatómica y también que la velocidad en el haz era
casi la décima parte de la velocidad de la luz.
El valor de la relación e/m medido con precisión es:
e/m= 1,75882012 x 1011 C/kg
2
MATERIAL A UTILIZAR
El aparato PASCO SE-9638 proporciona un método simple para medir la relación carga/masa
del electrón y es similar al utilizado por J.J. Thomson en 1897.
Un haz de electrones se acelera a través de un potencial conocido, por lo que la velocidad de
los electrones es conocida.
Un par de bobinas de Helmholtz produce un campo magnético uniforme que se puede medir y
forma un ángulo recto con el haz de electrones. El campo magnético desvía el haz de
electrones en una trayectoria circular.
Al medir el potencial de aceleración (V), la corriente en las bobinas Helmholtz (I), y el radio
de la trayectoria circular del haz de electrones (r), podremos calcular la relación e/m.
El aparato e/m también tiene placas de deflexión que pueden ser utilizados para demostrar el
efecto de un campo eléctrico en el haz de electrones. Esto puede ser usado como una
confirmación de la carga negativa del electrón, y también para demostrar cómo funciona un
osciloscopio.
El tubo se llena con helio a una presión 10-2 mm de Hg, y contiene un cañón de electrones y
placas de deflexión. El haz de electrones interacciona con los átomos de helio dejando un
rastro visible (traza) en el tubo, ya que al colisionar son excitados e irradian luz visible.
El cañón de electrones se muestra en la Figura 3. El filamento calienta el cátodo, que emite
electrones y son acelerados por un potencial aplicado entre el cátodo y el ánodo.
La rejilla se mantiene positiva con respecto al cátodo y negativo con respecto al ánodo. Sirve
controlar el haz de electrones y ayuda a enfocarlos pasando por un pequeño orificio del ánodo.
3
PRECAUCION: El voltaje del calentador del cañón de electrones nunca debe exceder de 6,3
voltios, ya que quemaría el filamento y destruirá el tubo.
Bobinas Helmholtz
Están constituidas por dos bobinas idénticas colocadas paralelamente y con una geometría que
hace que el radio de las bobinas sea igual a su separación. Esta característica proporciona un
campo magnético altamente uniforme.
Las bobinas de Helmholtz tienen un radio y una separación de 15 cm y 130 vueltas cada una.
Por tanto R= 0,15 m y N=130 vueltas
El campo magnético B producido por las bobinas es proporcional a la corriente que circula por
de ellas.
Espejo con escala métrica.
Detrás de las bobinas de Helmholtz está situada una escala con un espejo que permite medir el
radio de la trayectoria del haz sin error de paralaje.
Panel de control del dispositivo.
Todas sus conexiones están rotuladas y son claras. Ver figura 4.
Fuentes de voltaje
Fuente de alto voltaje, de 150 a 300 VDC para el potencial acelerador. Marca
PASCO, modelo SF-9585.
Fuente de bajo voltaje, de 6 a 9 VDC (voltios de corriente directa) y 3 A de
corriente máxima. La oscilación en el valor de V debe ser <1%, para que las
bobinas de Helmholtz proporcionen un campo magnético constante en el tiempo.
Marca Leybold
4
PROCEDIMIENTO
Todo el conjunto se coloca en el centro de las bobinas de Helmholtz que proporcionan un
campo magnético uniforme en la región en la que se realizarán las medidas.
Si llamamos Va a la diferencia de potencial que establecemos entre cátodo y ánodo, el
principio de la conservación de la energía nos permite conocer la velocidad v con la que entra
el electrón en el campo magnético a partir de las expresiones (4) y (5)
v=
2eVa
(6)
me
Por otra parte, a partir del a aplicación de la ley de Biot-Savart, conocemos el campo
magnético creado por una espira circular en su eje (R es el radio de la espira y x la distancia al
centro):
B=
μ 0 IR 2
(
2 x +R
2
)
2 3
(7)
a permeabilidad magnética µ0 = 1,257x10-6 T.m/A
Según la expresión (7), para una bobina de N espiras de radio R se creará un campo a una
distancia x= R/2 de:
3
B=
μ 0 NI ⎛ 4 ⎞ 2
⎜ ⎟ (8)
2R ⎝ 5 ⎠
Las bobinas de Helmholtz tienen un radio R, y están separadas entre si una distancia R, por lo
que si las conectamos en serie, el campo resultante en el centro del eje será la suma del de cada
5
una de ellas. La intensidad que circula por ellas será la misma y el campo será el doble del
obtenido en la expresión anterior. Operando tenemos:
B = 0,358
μ 0 NI
R
(9)
En nuestro caso N=130 espiras, y R=0,15 m
Como vimos en el fundamento teórico si igualamos la fuerza centrípeta y la normal
e
v
obteníamos la ecuación (3)
=
m Βr
Si despejamos la velocidad en la ecuación (4),
1 2
mv = e V,
2
y la sustituimos en la (3)
obtenemos la siguiente relación:
2V
e
= 2 a2
me Β r
(10)
me es la masa del electrón, Va la diferencia de potencial entre cátodo y ánodo y r el radio de la
circunferencia descrita por el haz de electrones.
MODO OPERATIVO
Se conecta el filamento a la fuente de alimentación de 6.3 V para calentarlo durante unos
minutos. Se ajusta la tensión de la fuente de alimentación de la rejilla a -50 V y la de ánodo a
+250 V. Después hacemos circular corriente por las bobinas (conectadas en serie) cuidando de
que la intensidad no sobrepase los 3 A, de forma que la circunferencia descrita por los
electrones tengan un radio de 2, 3, 4 ó 5 cm.
De este modo, midiendo la intensidad con un amperímetro, podremos calcular el campo
magnético B con la ecuación (9), y sustituir el valor en (10) obteniendo la relación e/m.
1) Si no se trabaja con posibilidad de oscurecer la sala donde se realiza el experimento
hay que poner una capucha de tela.
2) Conectamos el interruptor en la posición MEASURE (medida) del panel de control
3) Comprobamos que el botón de ajuste de corriente de las bobinas de Helmholtz está
en posición OFF.
4) Conectamos las fuentes y medidores del aparato e/m, tal como se muestra en la
Fig(4).
5) Ajuste la fuente a los siguientes niveles:
* Filamento del cañón de electrones: 6.3 V AC o VDC. PRECAUCION: El voltaje
del filamento del cañón de electrones nunca debe exceder 6.3 voltios. Voltajes
más altos quemarán el filamento o incluso destruirán el tubo e/m.
* Electrodos aceleradores: 150 a 300 VDC
* Bobinas de Helmholtz: 6-9 VDC (Oscilación debe ser menor de 1%). Gire el
botón de ajustar la corriente de las bobinas de Helmholtz suavemente en el sentido
6
del reloj desde la mínima. Obsérvese continuamente el amperímetro y compruebe
que la corriente no exceda de 2 A.
6) Espere varios minutos para que el cátodo se caliente. Cuando sucede verá el haz de
electrones emerger del cañón y su trayectoria curvarse por el campo de las bobinas de
Helmholtz. Si no sucede, girar el tubo hasta que suceda. ¡No lo saque de su base! Si
usted rota el tubo, la base también girará.
7) Registra la corriente de las bobinas de Helmholtz (IbH) y el voltaje acelerador
(Va). Anotar los valores en la Tabla 1.
8) Mida cuidadosamente el radio de la trayectoria del haz de electrones, r. Mire a
través del tubo el haz de electrones. Para evitar errores de paralaje, mueva su cabeza
para alinear el haz de electrones con la reflexión del haz que usted puede ver sobre la
escala del espejo. Mida el radio de la circunferencia luminosa, mirando a ambos
lados de la escala (rd y ri) y luego promedie los resultados (rm). Anotar los
resultados en la Tabla 1.
9) Repita el procedimiento anterior para valores diferentes del voltaje acelerador y
del campo magnético. Tome en total tres series de valores en la Tabla 1.
Tabla 1 Medidas experimentales útiles para determinar la relación e/m.
IBH
Va
rd
ri
rm
RESULTADOS
A partir de los datos de la Tabla 1, realice los siguientes cálculos:
• Los valores de la velocidad de los electrones, v.
• Los valores del campo magnético aplicado, B.
• La relación e/m ± Δ(e/m).
• El error relativo porcentual entre el valor obtenido por usted y otro experimental de gran
precisión, que es 1,75882012 x 1011 C/kg.
NOTA: La relación e/me es una medida indirecta, puesto que se determina a partir de
una expresión matemática que relaciona otras magnitudes ya medidas (ecuación 10).
Su incertidumbre, se calcula a partir de la de B, r y Va siguiendo la propagación de
incertidumbres dada en las prácticas de FG I. Considerar despreciable la
incertidumbre del número de espiras N de las bobinas, la del radio R y la de la
permeabilidad µ0 -
7