Download Las bacterias son microorganismos unicelulares que presentan un
Document related concepts
Transcript
LAS BACTERIAS Las bacterias son microorganismos procariontes (no poseen membrana nuclear por lo que su ADN está libre en la célula) de organización muy sencilla. Pertenecen al reino Protista. Son seres generalmente unicelulares. Son células de tamaño variable y poseen dimensiones medias que oscilan entre 0,5 y 5 μm por lo general. Las bacterias tienen una estructura menos compleja que la de las células de los organismos superiores: son células procariotas (su núcleo está formado por un único cromosoma, carecen de membrana nuclear y orgánulos internos). Igualmente son muy diferentes a los virus, que no pueden desarrollarse más dentro de las células y que sólo contienen un ácido nucleico. Las bacterias juegan un papel fundamental en la naturaleza y en el hombre: la presencia de una flora bacteriana normal es indispensable, aunque existen bacterias patógenas. Análogamente tienen un papel importante en la industria y permiten desarrollar importantes progresos en la investigación, concretamente en fisiología celular y en genética. El examen microscópico de las bacterias no permite identificarlas, ya que existen pocos tipos morfológicos, cocos (esféricos), bacilos (bastón), espirilos (espiras) y es necesario por lo tanto recurrir a técnicas que se detallarán más adelante. El estudio mediante la microscopia óptica y electrónica de las bacterias revela la estructura de éstas. Las bacterias son los organismos más abundantes del planeta. Son ubicuas, encontrándose en todo hábitat de la tierra, creciendo en el suelo, en manantiales calientes y ácidos, en desechos radioactivos, en las profundidades del mar y de la corteza terrestre. Algunas bacterias pueden incluso sobrevivir en las condiciones extremas del espacio exterior. Se estima que hay en torno a 40 millones de células bacterianas en un gramo de tierra y un millón de células bacterianas en un mililitro de agua dulce. En total, se calcula que hay aproximadamente 5×10 30 bacterias en el mundo. Las bacterias son imprescindibles para el reciclaje de los elementos, pues muchos pasos importantes de los ciclos biogeoquímicos dependen de éstas. Como ejemplo cabe citar la fijación del nitrógeno atmosférico. Sin embargo, solamente la mitad de los filos conocidos de bacterias tienen especies que se pueden cultivar en el laboratorio, por lo que una gran parte (se supone que cerca del 90%) de las especies de bacterias existentes todavía no ha sido descrita. En el cuerpo humano hay aproximadamente diez veces tantas células bacterianas como células humanas, con una gran cantidad de bacterias en la piel y en el tracto digestivo. Aunque el efecto protector del sistema inmune hace que la gran mayoría de estas bacterias sea inofensiva o beneficiosa, algunas bacterias patógenas pueden causar enfermedades infecciosas, incluyendo cólera, sífilis, lepra, tifus, difteria, escarlatina, etc. Las enfermedades bacterianas mortales más comunes son las infecciones respiratorias, con una mortalidad sólo para la tuberculosis de cerca de dos millones de personas al año. En todo el mundo se utilizan antibióticos para tratar las infecciones bacterianas. Los antibióticos son efectivos contra las bacterias ya que inhiben la formación de la pared celular o detienen otros procesos de su ciclo de vida. También se usan extensamente en la agricultura y la ganadería en ausencia de enfermedad, lo que ocasiona que se esté generalizando la resistencia de las bacterias a los antibióticos. En la industria, las bacterias son importantes en procesos tales como el tratamiento de aguas residuales, en la producción de queso, yogur, mantequilla, vinagre, etc., y en la fabricación de medicamentos y de otros productos químicos. Aunque el término bacteria incluía tradicionalmente a todos los procariotas, actualmente la taxonomía y la nomenclatura científica los divide en dos grupos. Estos dominios evolutivos se denominan Bacteria y Archaea (arqueas). La división se justifica en las grandes diferencias que presentan ambos grupos a nivel bioquímico y en aspectos estructurales. Estructura de la célula bacteriana Las bacterias son organismos relativamente sencillos. Sus dimensiones son muy reducidas, unos 2 μm de ancho por 7-8 μm de longitud en la forma cilíndrica (bacilo) de tamaño medio; aunque son muy frecuentes las especies de 0,5-1,5 μm. Se identifican en ellas estructuras internas y externas: Estructuras internas la Las bacterias no tienen un núcleo delimitado por membranas. El material genético está organizado en un único cromosoma situado en el citoplasma, dentro de un cuerpo irregular denominado nucleoide. Está formado por un único filamento de ácido desoxirribonucleico (ADN) apelotonado y que mide cerca de 1 mm. de longitud (1000 veces el tamaño de la bacteria). El citoplasma de las bacterias por ser procariotas no tienen orgánulos citoplasmáticos delimitados por membranas y por ello presentan pocas estructuras intracelulares. Carecen de núcleo celular, mitocondrias, cloroplastos y de los otros orgánulos presentes en las células eucariotas, tales como el aparato de Golgi y el retículo endoplasmático. Como excepción, algunas bacterias contienen estructuras intracelulares rodeadas por membranas que pueden considerarse primitivos orgánulos. En el citoplasma se pueden apreciar plásmidios, pequeñas moléculas circulares de ADN que coexisten con el nucleoide, contienen genes y son comúnmente usados por las bacterias en la conjugación. También contiene vacuolas (gránulos que contienen sustancias de reserva) y ribosomas (utilizados en la síntesis de proteínas). Como todos los organismos vivos, las bacterias contienen ribosomas son elementos granulosos que se hallan contenidos en el citoplasma bacteriano; esencialmente compuestos por ácido ribonucleico, desempeñan un papel principal en la síntesis proteica. Muchas bacterias presentan vacuolas, gránulos intracelulares para el almacenaje de sustancias, como por ejemplo glucógeno, polifosfatos, azufre o polihidroxialcanoatos. Ciertas especies bacterianas fotosintéticas, tales como las cianobacterias, producen vesículas internas de gas que utilizan para regular su flotabilidad y así alcanzar la profundidad con intensidad de luz óptima y/o unos niveles de nutrientes óptimos. Otras estructuras presentes en ciertas especies son los carboxisomas (que contienen enzimas para la fijación de carbono) y los magnetosomas (para la orientación magnética). Anteriormente se pensaba que las células procariotas no poseían citoesqueleto, pero desde entonces se han encontrado homólogos bacterianos de las principales proteínas del citoesqueleto de los eucariontes. El citoesqueleto bacteriano desempeña funciones esenciales en la protección, determinación de la forma de célula bacteriana y en la división celular. Estructuras externas Muchas bacterias son capaces de acumular material en el exterior para recubrir su superficie. Dependiendo de la rigidez y su relación con la célula se clasifican en cápsulas y glicocalix. La cápsula es una estructura rígida que se une firmemente a la superficie bacteriana, en tanto que el glicocalix es flexible y se une de forma laxa. Estas estructuras protegen a las bacterias pues dificultan que sean fagocitadas por células eucariotas tales como los macrófagos. También pueden actuar como antígenos y estar implicadas en el reconocimiento bacteriano, así como ayudar a la adherencia superficial y a la formación de biopelículas. La mayoria de las bacterias disponen de una pared celular que rodea a su membrana citoplasmática que es rígida, dúctil y elástica y explica la constancia de su forma. Las paredes celulares bacterianas están hechas de peptidoglicano que es un copolímero formado por una secuencia alternante de N-acetil-glucosamina y el ácido Nacetilmurámico unidos mediante enlaces peptidicos ß-1,4, sobre las que se fijan tetrapéptidos de composición variable. Además, existen constituyentes propios de las diferentes especies de la superficie. La cadena es recta y no ramificada. El antibiótico penicilina puede matar a muchas bacterias inhibiendo un paso de la síntesis del peptidoglicano. Peptidoglicano La diferencia de composición bioquímica de las paredes constituye dos grupos de bacterias con diferentes tipos de pared celular bacteriana, responsable de su diferente reacción de la pared celular a la tinción de Gram (colorante formado por violeta de genciana y una solución yodurada), un método tradicionalmente empleado para la clasificación de las especies bacterianas. Se distinguen las bacterias grampositivas (que tienen el Gram después de lavarlas con alcohol) y las gramnegativas (que pierden su coloración). Las bacterias Gram-positivas tienen una pared celular gruesa que contiene numerosas capas de peptidoglicano en las que se inserta ácido teicoico. En cambio, las bacterias Gram-negativas tienen una pared relativamente fina, consistente en unas pocas capas de peptidoglicano, rodeada por una segunda membrana lipídica (la membrana externa) que contiene lipopolisacáridos y lipoproteínas. Se conocen actualmente los mecanismos de la síntesis de la pared. Ciertos antibióticos pueden bloquearla. La destrucción de la pared provoca una fragilidad en la bacteria que toma una forma esférica (protoplasto) y estalla en medio hipertónico (solución salina con una concentración de 7 g. de NaCI por litro). Las micoplasmas son una excepción, pues carecen de pared celular. La mayoría de las bacterias tienen paredes celulares Gram-negativas; solamente son Grampositivas Firmicutes y Actinobacteria. Estas diferencias en la estructura de la pared celular dan lugar a diferencias en la susceptibilidad antibiótica. Por ejemplo, la vancomicina puede matar solamente a bacterias Gram-positivas y es ineficaz contra patógenos Gram-negativos, tales como Haemophilus influenzae o Pseudomonas aeruginosa. Dentro del filo Actinobacteria cabe hacer una mención especial al género Mycobacterium, el cual, si bien se encuadra dentro de las Gram positivas, no parece serlo desde el punto de vista empírico, ya que su pared no retiene el tinte. Esto se debe a que presentan una pared celular poco común, rica en ácidos micólicos, de carácter hidrófobo y ceroso y bastante gruesa, lo que les confiere una gran resistencia. Muchas bacterias tienen una capa S de moléculas de proteína de estructura rígida que cubre la pared celular. Esta capa proporciona protección química y física para la superficie celular y puede actuar como una barrera de difusión macromolecular. Las capas S tienen diversas (aunque todavía no bien comprendidas) funciones. Por ejemplo, en el género Campylobacter actúan como factores de virulencia y en la especie Bacillus stearothermophilus contienen enzimas superficiales. La membrana citoplasmática, situada debajo de la pared, es una bicapa lipídica compuesta fundamentalmente de fosfolípidos en la que se insertan moléculas de proteínas. En las bacterias realiza numerosas funciones entre las que se incluyen las de permeabilidad selectiva frente a las sustancias que entran y salen de la bacteria, barrera osmótica, transporte, biosíntesis, transducción de energía, centro de replicación de ADN y punto de anclaje para los flagelos. Por último, tiene un papel fundamental en la división del núcleo bacteriano. Los mesosomas, que son repliegues de la membrana, se encuentran enzimas que intervienen en la síntesis de ATP, y los pigmentos fotosintéticos en el caso de bacterias fotosintéticas. El espacio comprendido entre la membrana citoplasmática y la pared celular (o la membrana externa si esta existe) se denomina espacio periplásmico. Algunas bacterias presentan una cápsula y otras son capaces de evolucionar a endosporas, estadios latentes capaces de resistir condiciones extremas. Algunas bacterias pueden presentar flagelos o cilios, que son largos apéndices generalmente filamentosos compuestos de proteínas y de longitud variable; utilizados para el movimiento. Según las especies, pueden estar implantados en uno o en los dos polos de la bacteria o en todo su entorno mediante un corpúsculo basal. Constituyen el soporte de los antígenos "H". En algunos bacilos gramnegativos se encuentran las fimbrias, que son filamentos finos de proteinas, muy numerosos y cortos, que se distribuyen sobre la superficie de la célula. Ayudan a la adherencia de las bacterias a las superficies sólidas o a otras células y son esenciales en la virulencia de algunos patógenos. Los pili son apéndices celulares ligeramente mayores que las fimbrias y se utilizan para la transferencia de material genético entre bacterias en un proceso denominado conjugación bacteriana. La división celular bacteriana. Generalmente las bacterias se reproducen por bipartición dando lugar dos células hijas, como se ve en el siguiente esquema: Tras la duplicación del ADN (cuya división es no-mitótica), que está dirigida por la ADNpolimerasa que se encuentra en los mesosomas, la división empieza en el centro de la bacteria por una invaginación de la membrana citoplasmática que da origen a la formación de un septo o tabique transversal separador que crece hasta formar las dos nuevas bacterias. La separación de las dos bacterias va acompañada de la segregación en cada una de ellas de uno de los dos genomas que proviene de la duplicación del ADN materno. Pero además de este tipo de reproducción asexual, las bacterias poseen unos mecanismos de reproducción sexual o parasexual, mediante los cuales se intercambian fragmentos de ADN. Esta reproducción sexual o parasexual, puede realizarse por transformación, por conjugación o por transducción. 1. Transformación. Consiste en el intercambio genético producido cuando una bacteria es capaz de captar fragmentos de ADN, de otra bacteria que se encuentran dispersos en el medio donde vive. A continuación ver esquema. 2. Conjugación. En este proceso, una bacteria donadora F+ transmite a través de un puente o pili, un fragmento de ADN, a otra bacteria receptora F-. La bacteria que se llama F+ posee un plasmidio, además del cromosoma bacteriano. Se puede ver en el esquema siguiente: 3. Transducción. En este caso la transferencia de ADN de una bacteria a otra se realiza a través de un virus bacteriófago, que se comporta como un vector intermediario entre las dos bacterias. También podemos ver el proceso en esquema: a, el virus se acopla a la bacteria, b. el virus rompe la pared bacteriana, c. el virus inyecta su ADN Endosporas o esporas bacterianas Ciertos géneros de bacterias Gram-positivas, tales como Bacillus, Clostridium, Sporohalobacter, Anaerobacter y Heliobacterium, pueden sintetizar un órgano de resistencia, las endosporas. Las endosporas son estructuras durmientes altamente resistentes cuya función primaria es sobrevivir cuando las condiciones ambientales son adversas y se transforma de nuevo en una forma vegetativa cuando las condiciones del medio vuelven a ser favorables. Las endosporas tienen una base central de citoplasma que contiene ADN y ribosomas, rodeada por una corteza y protegida por una cubierta impermeable y rígida. Las endosporas no presentan un metabolismo detectable y pueden sobrevivir a condiciones físicas y químicas extremas, tales como altos niveles de luz ultravioleta, rayos gamma, detergentes, desinfectantes, calor, presión y desecación. En este estado durmiente, las bacterias pueden seguir viviendo durante millones de años, e incluso pueden sobrevivir en la radiación y vacío del espacio exterior. Las endosporas pueden también causar enfermedades. Por ejemplo, puede contraerse carbunco por la inhalación de endosporas de Bacillus anthracis y tétanos por la contaminación de las heridas con endosporas de Clostridium tetani. Metabolismo El éxito evolutivo de las bacterias se debe en parte a su versatilidad metabólica. Todos los mecanismos posibles de obtención de materia y energía podemos encontrarlos en las bacterias. Según la fuente de carbono que utilizan, los seres vivos se dividen en autótrofos, cuya principal fuente de carbono es el CO2, y heterótrofos cuando su fuente de carbono es materia orgánica. Por otra parte según la fuente de energía, los organismos o seres vivos pueden ser fotótrofos, cuya principal fuente de energía es la luz, y quimiótrofos, cuya fuente de energía es un compuesto químico que se oxida. Atendiendo a las anteriores categorías, entre las bacterias podemos encontrar las siguientes formas, como puede apreciarse en el esquema: 1. Las bacterias quimioheterótrofas, utilizan un compuesto químico como fuente de carbono, y a su vez, este mismo compuesto es la fuente de energía. La mayor parte de las bacterias cultivadas en laboratorios y las bacterias patógenas son de este grupo. 2. Las bacterias quimioautótrofas, utilizan compuestos inorgánicos reducidos como fuente de energía y el CO2 como fuente de carbono. Como, por ejemplo, Nitrobacter, Thiobacillus. 3. Las bacterias fotoautótrofas, utilizan la luz como fuente de energía y el CO2 como fuente de carbono. Bacterias purpúreas. 4. Las bacterias fotoheterótrofas, utilizan la luz como fuente de energía y biomoléculas como fuente de carbono. Ejemplos como Rodospirillum y Cloroflexus.´ Nutrición y crecimiento bacterianos. Las bacterias necesitan de un aporte energético para desarollarse. Se distinguen distintos tipos nutricionales según la fuente de energía utilizada: las bacterias que utilizan la luz son fotótrofas y las que utilizan los procesos de oxirreducción son quimiótrofas. Las bacterias pueden utilizar un sustrato mineral (litótrofas) u orgánico (organótrofas). Las bacterias patógenas que viven a expensas de la materia orgánica son quimioorganótrofas. La energía en un sustrato orgánico es liberada en la oxidación del mismo mediante sucesivas deshidrogenaciones. El aceptor final del hidrógeno puede ser el oxígeno: se trata entonces de una respiración. Cuando el aceptor de hidrógeno es una sustancia orgánica (fermentación) o una sustancia inorgánica, estamos frente a una anaerobiosis. Además de los elementos indispensables para la síntesis de sus constituyentes y de una fuente de energía, ciertas bacterias precisan de unas sustancias específicas: los factores de crecimiento. Son éstos unos elementos indispensables para el crecimiento de un organismo incapaz de llevar a cabo su síntesis. Las bacterias que precisan de factores de crecimiento se llaman "autótrofas". Las que pueden sintetizar todos sus metabolitos se llaman "protótrofas". Ciertos factores son específicos, tal como la nicotinamida (vitamina B,) en Proteus. Existen unos niveles en la exigencia de las bacterias. Según André Lwoff, se pueden distinguir verdaderos factores de crecimiento, absolutamente indispensables, factores de partida, necesarios al principio del crecimiento y factores estimulantes. El crecimiento bacteriano es proporcional a la concentración de los factores de crecimiento. Así, las vitaminas, que constituyen factores de crecimiento para ciertas bacterias, pueden ser dosificadas por métodos microbiológicos (B12 y Lactobacillus lactis Doraren). Se puede medir el crecimiento de las bacterias siguiendo la evolución a lo largo del tiempo del número de bacterias por unidad de volumen. Se utilizan métodos directos como pueden ser el contaje de gérmenes mediante el microscopio o el contaje de colonias presentes después de un cultivo de una dilución de una muestra dada en un intervalo de tiempo determinado. Igualmente se utilizan métodos indirectos (densidad óptica más que técnicas bioquímicas). Existen seis fases en las curvas de crecimiento. Las más importantes son la fase de latencia (que depende del estado fisiológico de los gérmenes estudiados) y la fase exponencial, en la que la tasa de crecimiento es máxima. El crecimiento se para como consecuencia del agotamiento de uno o varios alimentos, de la acumulación de sustancias nocivas, o de la evolución hacia un pH desfavorable: se puede obtener una sincronización en la división de todas las células de la población, lo que permite estudiar ciertas propiedades fisiológicas de los gérmenes. La mayoría de las bacterias pueden clasificarse en tres categorías de acuerdo a su respuesta al oxígeno gaseoso. Las bacterias aerobias crece en la presencia de oxígeno y lo requiere para su continuo crecimiento y existencia. Las bacterias anaerobias, no pueden tolerar el oxígeno gaseoso. Las bacterias anaerobias facultativas, las cuales prefieren crecer en presencia de oxígeno, aunque pueden hacerlo sin él. Genética bacteriana. Por la rapidez en su multiplicación, se eligen las bacterias como material para los estudios genéticos. En un pequeño volumen forman enormes poblaciones cuyo estudio evidencia la aparición de individuos que tienen propiedades nuevas. Se explica este fenómeno gracias a dos procesos comunes a todos los s o, traducidas por la aparición brusca eres vivos: las variaciones del genotipo de un carácter transmisible a la descendencia, y las variaciones fenotípicas, debidas al medio, no transmisibles y de las que no es apropiado hablar en genética. Las variaciones del genotipo pueden provenir de mutaciones, de transferencias genéticas y de modificaciones extracromosómicas. Las mutaciones. Todos los caracteres de las bacterias pueden ser objeto de mutaciones y ser modificados de varias maneras. Las mutaciones son raras: la tasa de mutación oscila entre 10 y 100. Las mutaciones aparecen en una sola vez, de golpe. Las mutaciones son estables: un carácter adquirido no puede ser perdido salvo en caso de mutación reversible cuya frecuencia no es siempre idéntica a las de las mutaciones primitivas. Las mutaciones son espontáneas: no son inducidas, sino simplemente reveladas por el agente selectivo que evidencia los mutantes. Los mutantes, por último, son específicos: la mutación de un carácter no afecta a la de otro. El estudio de las mutaciones tiene un interés fundamental. En efecto, tiene un interés especial de cara a la aplicación de dichos estudios a los problemas de resistencia bacteriana a los antibióticos. Análogamente tiene una gran importancia en los estudios de fisiología bacteriana. Transferencias genéticas. Estos procesos son realizados mediante la transmisión de caracteres hereditarios de una bacteria dadora a una receptora. Existen varios mecanismos de transferencia genética. A lo largo de la transformación, la bacteria receptora adquiere una serie de caracteres genéticos en forma de fragmento de ADN. Esta adquisición es hereditaria. Este fenómeno fue descubierto en los neumococos en 1928. En la conjugación, el intercambio de material genético necesita de un contacto entre la bacteria dadora y la bacteria receptora. La cualidad de dador está unida a un factor de fertilidad (F) que puede ser perdido. La transferencia cromosómica se realiza generalmente con baja frecuencia. No obstante, en las poblaciones F+, existen mutantes capaces de transferir los genes cromosómicos a muy alta frecuencia. La duración del contacto entre bacteria dadora y bacteria receptora condiciona la importancia del fragmento cromosómico transmitido. El estudio de la conjugación ha permitido establecer los mapas cromosómicos de ciertas bacterias. Ciertamente, la conjugación juega un papel en la aparición en las bacterias de resistencia a los antibióticos. La transducción es una transferencia genética obtenida mediante introducción en una bacteria receptora de genes bacterianos inyectados por un bacteriófago. Se trata de un virus que infecta ciertas bacterias sin destruirlas y cuyo ADN se integra en el cromosoma bacteriano. La partícula fágica transducida a menudo ha perdido una parte de su genoma que es sustituida por un fragmento de gene de la bacteria huésped, parte que es así inyectada a la bacteria receptora. Según el tipo de transducción, todo gen podrá ser transferido o, por el contrario, lo serán un grupo de genes determinados. Variaciones extracromosómicas. Además de las mutaciones y transferencias genéticas, la herencia bacteriana pude ser modificada por las variaciones que afectan ciertos elementos extracromosómicos que se dividen con la célula y son responsables de caracteres transmisibles: son los plasmidios y episomas entre los cuales el factor de transferencia de residencia múltiple juega un papel principal en la resistencia a los antibióticos. Clasificación de las bacterias. La identificación de las bacterias es tanto más precisa cuanto mayor es el número de criterios utilizados. Esta identificación se realiza a base de modelos, agrupados en familias y especies en la clasificación bacteriológica. Las bacterias se reúnen en 11 órdenes: Las eubacteriales, esféricas o bacilares, que comprenden casi todas las bacterias patógenas y las formas fotótrofas. Las pseudomonadales, orden dividido en 10 familias entre las que cabe citar las Pseudomonae y las Spirillacae. Las espiroquetales (treponemas, leptospiras). Las actinomicetales (micobacterias, actinomicetes). Las rickettsiales. Las micoplasmales. Las clamidobacteriales. Las hifomicrobiales. Las beggiatoales. Las cariofanales. Las mixobacteriales. Relaciones entre la bacteria y su huésped. Ciertas bacterias viven independientes e otros seres vivos. Otras son parásitas. Pueden vivir en simbiosis con su huésped ayudándose mutuamente o como comensales (sin beneficio). Pueden ser patógenas, es decir, vivir de su huésped. La virulencia es la aptitud de un microorganismo para multiplicarse en los tejidos de su huésped (creando en ellos alteraciones). Esta virulencia puede estar atenuada (base del principio de la vacunación) o exaltada (paso de un sujeto a otro). La virulencia puede ser fijada por liofilización. Parece ser función del huésped (terreno) y del entorno (condiciones climáticas). La puerta de entrada de la infección tiene igualmente un papel considerable en la virulencia del germen. El poder patógeno es la capacidad de un germen de implantarse en un huésped y de crear en él trastornos. Está ligada a dos causas: La producción de lesiones en los tejidos mediante constituyentes de la bacteria, como pueden ser enzimas que ella excreta y que atacan tejidos vecinos o productos tóxicos provenientes del metabolismo bacteriano. La producción de toxinas. Se puede tratar de toxinas proteicas (exotoxinas excretadas por la bacteria, transportadas a través de la sangre y que actúan a distancia sobre órganos sensibles) o de toxinas glucoproteicas (endotoxinas), estas últimas actuando únicamente en el momento de la destrucción de la bacteria y pudiendo ser responsables de choques infecciosos en el curso de septicemias provocadas por gérmenes gramnegativos en el momento en que la toxina es brutalmente liberada. A estas agresiones microbianas, el organismo opone reacciones defensivas ligadas a procesos de inmunidad, mientras que el conflicto huésped-bacteria se traduce por manifestaciones clínicas y biológicas de la enfermedad infecciosa. Importancia de las bacterias. Existen bacterias en todos los sitios. Hemos visto el interés de su estudio para la comprensión de la fisiológica celular, de la síntesis de proteínas y de la genética. Aunque las bacterias patógenas parecen ser las más preocupantes, su importancia en la naturaleza es ciertamente menor. El papel de las bacterias no patógenas es fundamental. Intervienen en el ciclo del nitrógeno y del carbono, así como en los metabolismos del azufre, del fósforo y del hierro. Las bacterias de los suelos y del las aguas son indispensables para el equilibrio biológico. Por último, las bacterias pueden ser utilizadas en las industrias alimenticias y químicas: intervienen en la síntesis de vitaminas y de antibióticos. Las bacterias tienen, por lo tanto, un papel fundamental en los fenómenos de la vida, y todas las áreas de la biología han podido ser mejor comprendidas gracias a su estudio. Bacterias patógenas Casi doscientas especies de bacterias son patógenas para el ser humano; es decir, causantes de enfermedades. El efecto patógeno varía mucho en función de las especies y depende tanto de la virulencia de la especie en particular como de las condiciones del organismo huésped. Entre las bacterias más dañinas están las causantes del cólera, del tétanos, de la gangrena gaseosa, de la lepra, de la peste, de la disentería bacilar, de la tuberculosis, de la sífilis, de la fiebre tifoidea, de la difteria, de la fiebre ondulante o brucelosis, y de muchas formas de neumonía. Hasta el descubrimiento de los virus, las bacterias fueron consideradas los agentes patógenos de todas las enfermedades infecciosas. http://es.wikipedia.org/wiki/Bacteria Ver: Desarrollo y proliferación de las bacterias x Las paredes celulares bacterianas son distintas de las que tienen plantas y hongos, compuestas de celulosa y quitina, respectivamente. Son también distintas a las paredes celulares de Archaea, que no contienen peptidoglicano. Metabolismo En contraste con los organismos superiores, las bacterias exhiben una gran variedad de tipos metabólicos. El metabolismo bacteriano se clasifica en base a tres criterios importantes: el origen del carbono, la fuente de energía y los donadores de electrones. Un criterio adicional para clasificar a los microorganismos que respiran es el receptor de electrones usado en la respiración. Según la fuente de carbono, las bacterias se pueden clasificar como: Heterótrofas, cuando usan compuestos orgánicos. Autótrofas, cuando el carbono celular se obtiene mediante la fijación del dióxido de carbono. Las bacterias autótrofas típicas son las cianobacterias fotosintéticas, las bacterias verdes del azufre y algunas bacterias púrpura. Pero hay también muchas otras especies quimiolitotrofas, por ejemplo, las bacterias nitrificantes y oxidantes del azufre. Según la fuente de energía, las bacterias pueden ser: Fototrofas, cuando emplean la luz a través de la fotosíntesis. Quimiotrofas, cuando obtienen energía a partir de sustancias químicas que son oxidadas principalmente a expensas del oxígeno (respiración aerobia) o de otros receptores de electrones alternativos (respiración anaerobia). Según los donadores de electrones, las bacterias también se pueden clasificar como: Litotrofas, si utilizan como donadores de electrones compuestos inorgánicos. Organotrofas, si utilizan como donadores de electrones compuestos orgánicos. Los organismos quimiotrofos usan donadores de electrones para la conservación de energía (durante la respiración aerobia, anaerobia y la fermentación) y para las reacciones biosintéticas (por ejemplo, para la fijación del dióxido de carbono), mientras que los organismos fototrofos los utilizan únicamente con propósitos biosintéticos. Bacterias del hierro en un regato. Estos microorganismos quimiolitotrofos obtienen la energía que necesitan por oxidación del óxido ferroso a óxido férrico. Los organismos que respiran usan compuestos químicos como fuente de energía, tomando electrones del sustrato reducido y transfiriéndolos a un receptor terminal de electrones en una reacción redox. Esta reacción desprende energía que se puede utilizar para sintetizar ATP y así mantener activo el metabolismo. En los organismos aerobios, el oxígeno se utiliza como receptor de electrones. En los organismos anaerobios se utilizan como receptores de electrones otros compuestos inorgánicos tales como nitratos, sulfatos o dióxido de carbono. Esto conduce a que se lleven a cabo los importantes procesos biogeoquímicos de la desnitrificación, la reducción del sulfato y la acetogénesis, respectivamente. Otra posibilidad es la fermentación, un proceso de oxidación incompleta, totalmente anaeróbico, siendo el producto final un compuesto orgánico, que al reducirse será el receptor final de los electrones. Ejemplos de productos de fermentación reducidos son el lactato (en la fermentación láctica), etanol (en la fermentación alcohólica), hidrógeno, butirato, etc. La fermentación es posible porque el contenido de energía de los sustratos es mayor que el de los productos, lo que permite que los organismos sinteticen ATP y mantengan activo su metabolismo. Los organismos anaerobios facultativos pueden elegir entre la fermentación y diversos receptores terminales de electrones dependiendo de las condiciones ambientales en las cuales se encuentren. Las bacterias litotrofas pueden utilizar compuestos inorgánicos como fuente de energía. Los donadores de electrones inorgánicos más comunes son el hidrógeno, el monóxido de carbono, el amoníaco (que conduce a la nitrificación), el hierro ferroso y otros iones de metales reducidos, así como varios compuestos de azufre reducidos. En determinadas ocasiones, las bacterias metanotrofas pueden usar gas metano como fuente de electrones y como sustrato simultáneamente, para el anabolismo del carbono. En la fototrofía y quimiolitotrofía aerobias, se utiliza el oxígeno como receptor terminal de electrones, mientras que bajo condiciones anaeróbicas se utilizan compuestos inorgánicos. La mayoría de los organismos litotrofos son autótrofos, mientras que los organismos organotrofos son heterótrofos. Además de la fijación del dióxido de carbono mediante la fotosíntesis, algunas bacterias también fijan el gas nitrógeno usando la encima nitrogenasa. Esta característica es muy importante a nivel ambiental y se puede encontrar en bacterias de casi todos los tipos metabólicos enumerados anteriormente, aunque no es universal. El metabolismo microbiano puede jugar un papel importante en la biorremediación pues, por ejemplo, algunas especies pueden realizar el tratamiento de las aguas residuales y otras son capaces de degradar los hidrocarburos, sustancias tóxicas e incluso radiactivas. En cambio, las bacterias reductoras de sulfato son en gran parte responsables de la producción de formas altamente tóxicas de mercurio (metil- y dimetil-mercurio) en el ambiente.