Download Principios De Circuitos Electricos

Document related concepts

Análisis de nodos wikipedia , lookup

Teorema de superposición wikipedia , lookup

Transistor de avalancha wikipedia , lookup

Análisis de circuitos wikipedia , lookup

Resistencia negativa wikipedia , lookup

Transcript
OCTAVA
FLOYD
• Cobertura amplia y directa de los fundamentos de componentes y
circuitos eléctricos
• Explicaciones y aplicaciones claras de las leyes fundamentales de
los circuitos y análisis en una amplia diversidad de circuitos básicos,
con énfasis en aplicaciones
• Extensa cobertura del tema de localización y resolución de fallas
Estos atributos lo convierten en la alternativa ideal para el salón de clases y
para quien desee iniciar una carrera en electrónica. En el estilo de
redacción claro y singularmente atractivo de Floyd, los conceptos
esenciales se presentan y refuerzan de una forma creativa hasta que el
lector adquiere una firme comprensión de todos los elementos clave
relacionados con los circuitos eléctricos. Y ahora, en respuesta a la
abrumadora retroalimentación de los usuarios, Principios de circuitos
eléctricos, octava edición, ofrece más ejemplos, más aplicaciones prácticas
y más problemas, así como una mayor claridad sobre los conceptos
difíciles para proporcionar una perspectiva del “mundo real” aún más
práctica para garantizar la comprensión total del material presentado.
En el sitio Web de este libro (www.pearsoneducacion.net/floyd) el
estudiante encontrará material adicional; los instructores que utilicen este
texto en un curso pueden disponer también de varios recursos muy útiles y
atractivos, entre ellos un Manual de recursos para el intructor, diapositivas
en Power Point ® y el TestGen.
Principios de
circuitos eléctricos
Principios de
circuitos eléctricos
Este best seller sobre circuitos de cd y ca incluye ahora cambios
significativos (muy positivos) para instructores y estudiantes. Como en
ediciones anteriores, Principios de circuitos eléctricos, octava edición,
conserva sus mejores cualidades:
EDICIÓN
OCTAVA
EDICIÓN
Visítenos en:
www.pearsoneducacion.net
FLOYD
P RINCIPIOS
DE
CIRCUITOS ELÉCTRICOS
Octava edición
Thomas L. Floyd
TRADUCCIÓN
Rodolfo Navarro Salas
Ingeniero Mecánico
Universidad Nacional Autónoma de México
REVISIÓN TÉCNICA
Luis Mauro Ortega González
Ingeniero Mecánico Electricista
Instituto Tecnológico y de Estudios Superiores de Monterrey
Campus Estado de México
Gustavo Pérez López
Maestro en Ciencias
Instituto Tecnológico y de Estudios Superiores de Monterrey
Campus Estado de México
Datos de catalogación bibliográfica
FLOYD, THOMAS L.
Principios de circuitos eléctricos. Octava edición
PEARSON EDUCACIÓN, México, 2007
ISBN: 978-970-26-0967-4
Área: Ingeniería
Formato: 21 × 27 cm
Páginas: 968
Authorized translation from the English language edition, entitled Principles of electric circuits by Thomas L. Floyd published by Pearson
Education, Inc., publishing as PRENTICE HALL, INC., Copyright © 2007. All rights reserved.
ISBN 0-13-170179-7
Traducción autorizada de la edición en idioma inglés, Principles of electric circuits por Thomas L. Floyd, publicada por Pearson Education,
Inc., publicada como PRENTICE-HALL INC., Copyright © 2007. Todos los derechos reservados.
Esta edición en español es la única autorizada.
Edición en español
Editor:
Luis Miguel Cruz Castillo
e-mail: [email protected]
Editor de desarrollo: Bernardino Gutiérrez Hernández
Supervisor de producción: José D. Hernández Garduño
Edición en inglés
Acquisitions Editor: Kate Linsner
Production Editor: Rex Davidson
Design Coordinator: Diane Ernsberger
Editorial Assistant: Lara Dimmick
Cover Designer: Candace Rowley
Cover art: Getty
Production Manager: Matt Ottenweller
Senior Marketing Manager: Ben Leonard
Marketing Assistant: Les Roberts
Senior Marketing Coordinator: Liz Farrell
OCTAVA EDICIÓN 2007
D.R. © 2007 por Pearson Educación de México, S.A. de C.V.
Atlacomulco 500, 5° piso
Col. Industrial Atoto
53519 Naucalpan de Juárez, Edo. de México
E-mail: [email protected]
Cámara Nacional de la Industria Editorial Mexicana. Reg. Núm. 1031.
Prentice Hall es una marca registrada de Pearson Educación de México, S.A. de C.V.
Reservados todos los derechos. Ni la totalidad ni parte de esta publicación pueden reproducirse, registrarse o transmitirse, por un sistema de
recuperación de información, en ninguna forma ni por ningún medio, sea electrónico, mecánico, fotoquímico, magnético o electroóptico,
por fotocopia, grabación o cualquier otro, sin permiso previo por escrito del editor.
El préstamo, alquiler o cualquier otra forma de cesión de uso de este ejemplar requerirá también la autorización del editor o de sus
representantes.
ISBN 10: 970-26-0967-4
ISBN 13: 978-970-26-0967-4
Impreso en México. Printed in Mexico.
1 2 3 4 5 6 7 8 9 0 - 10 09 08 07
D EDICATORIA
Una vez más, a Sheila
Con amor
P REFACIO
La octava edición de Principios de circuitos eléctricos proporciona una cobertura completa y directa de los fundamentos de componentes y circuitos eléctricos. Explica y aplica las leyes fundamentales y los métodos de análisis de circuitos en diversos circuitos básicos. Hace hincapié en
aplicaciones, muchas de las cuales son nuevas en esta edición, y la mayor parte de los capítulos
contiene una sección especial llamada Una aplicación de circuito. Localización de fallas continúa siendo una parte importante de esta edición, y muchos capítulos incluyen una sección especial dedicada al tema.
Lo nuevo en esta edición
◆
La disposición y el diseño del texto
◆
Archivos Multisim para ejemplos seleccionados
◆
Archivos Multisim 8, además de Multisim 2001 y Multisim 7, para Localización de fallas
y Análisis de problemas
◆
La cobertura de fasores se cambió al capítulo 11, Introducción a la corriente alterna y al
voltaje alternos
◆
La cobertura de números complejos se cambió al capítulo 15, Circuitos RC
◆
Problemas nuevos en la mayor parte de los capítulos
◆
Numerosas mejoras a lo largo del texto
◆
Innovadoras diapositivas en Power Point® para cada capítulo, disponibles en el CD-ROM
anexo
Características
◆
Cada capítulo inicia con un esquema de los temas a tratar, los objetivos del capítulo, una
lista de términos clave, una referencia al sitio Web y una pequeña introducción.
◆
Cada sección comienza con una introducción y sus objetivos
◆
El apartado Una aplicación de circuito al final de la mayor parte de los capítulos
◆
Abundantes ilustraciones de alta calidad
◆
Biografías cortas de personajes clave en la historia de la electricidad
◆
Notas de seguridad localizadas en puntos apropiados a lo largo del texto e identificadas
mediante un logotipo especial
◆
Gran cantidad de ejemplos resueltos
◆
Un Problema relacionado en cada ejemplo resuelto con sus respuestas al final del capítulo
◆
Repasos de sección con respuestas al final del capítulo
VI
◆
P REFACIO
◆
La sección Localización de fallas a lo largo de todo el libro.
◆
Un Resumen al final de cada capítulo.
◆
Los Términos clave se definen al concluir cada capítulo y aparecen también en el glosario
general del libro.
◆
Una Lista de fórmulas al finalizar cada capítulo.
◆
Autoevaluación y Respuestas por capítulo.
◆
Un Examen de dinámica de circuitos que pone a prueba la comprensión del estudiante de
lo que sucede en un circuito a consecuencia de ciertos cambios o fallas. Las respuestas se
dan al final del capítulo.
◆
Un conjunto de problemas seccionado en cada capítulo: los más difíciles señalados mediante un asterisco. Las respuestas a problemas de número impar aparecen al final del
libro.
◆
Un glosario general con las definiciones de todos los términos clave y los resaltados en negritas en el texto.
◆
El libro utiliza el sentido convencional de la corriente. (Una versión alterna de este texto
utiliza la dirección del flujo de electrones).
Recursos adicionales para el estudiante
CD-ROM Multisim®: este CD (totalmente en inglés), incluido en cada libro, contiene una
serie de archivos de circuito Multisim citados en el texto; muchos de ellos contienen fallas
ocultas. Todos estos archivos vienen en el CD-ROM en Multisim 2001®, Multisim 7® y
Multisim 8®. Los archivos de versiones actualizadas de Multisim aparecerán en el sitio Web
www.pearsoneducacion.net/floyd conforme el fabricante, Electronics Workbench, vaya desarrollándolas.
Estos archivos Multisim se proporcionan para ser utilizados por cualquier usuario que posea programas de cómputo Multisim. Quien no tenga estos programas y desee adquirirlos podrá solicitarlos en www.prenhall.com/ewb. Sin embargo, aun cuando los archivos de circuito
han sido creados para complementar lo expuesto en el salón de clases, en el libro de texto y en
el laboratorio, no son indispensables para estudiar los circuitos de cd y ca, ni para el desarrollo de este libro.
Sitio Web del libro (www.pearsoneducacion.net/floyd): este sitio Web, también en inglés,
ofrece al estudiante la oportunidad de comprobar su propio progreso y responder preguntas de
exámenes muestra.
Recursos para el instructor (en inglés)
Para tener acceso a los materiales complementarios en línea, los instructores deben obtener una
contraseña. Vaya a www.prenhall.com, haga clic en el vínculo Instructor Resource Center, y
luego en Register, para registrarse y obtener la contraseña de acceso de instructor. Dentro de las
48 horas siguientes, recibirá un correo electrónico de confirmación incluyendo la contraseña solicitada. Una vez que la tenga en su poder, ingrese al sitio e inicie una sesión para recibir instrucciones completas sobre cómo bajar los materiales que desee utilizar.
Diapositivas en Power Point® Un juego completamente nuevo de innovadoras diapositivas en
Power Point®, creado por David M. Buchla, ilustra dinámicamente los conceptos clave presentados en el texto. Cada diapositiva contiene un resumen con ejemplos, definiciones de términos
clave, y un examen para cada capítulo. Ésta es una herramienta excelente para efectuar una presentación en el salón de clases como complemento del libro de texto. Otra carpeta de diapositivas
incluye todas las figuras del texto a todo color, lo que le resultará muy útil. Todo este material está disponible en Internet.
P REFACIO
11
Esquema
del capítulo
INTRODUCCIÓN A LA CORRIENTE
Y AL VOLTAJE ALTERNOS
ESQUEMA DEL CAPÍTULO
Lista de
objetivos
basados en el
desempeño
11–1
11–2
11–3
11–4
11–5
11–6
11–7
11–8
11–9
11–10
La forma de onda sinusoidal
Fuentes de voltaje sinusoidal
Valores sinusoidales de voltaje y corriente
Medición angular de una onda seno
La fórmula de la onda seno
Introducción a los fasores
Análisis de circuitos de CA
Voltajes superpuestos de CD y de CA
Formas de onda no sinusoidales
El osciloscopio
Una aplicación de circuito
◆
◆
◆
◆
◆
◆
◆
◆
◆
sus características
Describir cómo se generan las ondas seno
Determinar los diversos valores de voltaje y
corriente de una onda seno
Describir las relaciones angulares de una onda
seno
Analizar matemáticamente una forma de onda
sinusoidal
Utilizar un fasor para representar una onda seno
Aplicar las leyes de circuito básicas a circuitos de
ca resistivos
Determinar voltajes totales que tienen tanto
componentes de ca como de cd
Identificar las características de formas de onda no
sinusoidales básicas
Utilizar un osciloscopio para medir formas de
onda
TÉRMINOS CLAVE
◆ Amplitud
◆ Frecuencia (f)
◆ Ancho de pulso (tW)
◆ Frecuencia
◆ Armónicos
◆ Tiempo de subida (tr)
◆ Periódico
◆ Valor instantáneo
◆ Periodo (T)
◆ Valor pico
◆ Pulso
◆ Valor pico a pico
◆ Radián
◆ Valor promedio
◆ Rampa
◆ Valor rms
◆ Tiempo de caída (tf)
◆ Velocidad angular
DESCRIPCIÓN PREVIA DE UNA
APLICACIÓN DE CIRCUITO
En la aplicación de circuito, usted aprenderá cómo se
miden señales de voltaje en un receptor de AM con un
osciloscopio.
OBJETIVOS DEL CAPÍTULO
◆ Identificar una forma de onda sinusoidal y medir
Términos clave
◆ Osciloscopio
fundamental
◆ Ciclo
◆ Generador de función
◆ Ciclo de trabajo
◆ Grado
◆ Fase
◆ Hertz (Hz)
◆ Fasor
◆ Onda seno
◆ Forma de onda
◆ Oscilador
VISITE EL SITIO WEB RELACIONADO
Auxiliares de estudio para este capítulo están
disponibles en
http://www.pearsoneducacion.net/floyd
Descripción
previa de
Una aplicación
de circuito
Referencia
al sitio Web
INTRODUCCIÓN
En los capítulos precedentes se estudiaron los
circuitos resistivos con corrientes y voltajes de cd. Este
capítulo proporciona una introducción al análisis de
circuitos de ca en el cual se estudian las señales
eléctricas que varían con el tiempo, en particular la
onda seno. Una señal eléctrica es un voltaje o una
corriente que cambian de manera consistente con el
tiempo. En otras palabras, el voltaje o la corriente
fluctúan de acuerdo con cierto patrón llamado forma
de onda.
Un voltaje alterno es uno que cambia de polaridad
con cierta rapidez. La forma de onda sinusoidal (onda
seno) es el tipo más común y fundamental porque
todos los demás tipos de formas de onda repetitivas
pueden ser descompuestos en ondas seno
compuestas. La onda seno es un tipo periódico de
forma de onda que se repite a intervalos fijos.
Se pone un énfasis especial en la forma de onda
sinusoidal (onda seno) debido a su importancia
fundamental en el análisis de circuitos de ca. También
se introducen otras formas de onda, incluidas la de
pulso, la triangular, y la de diente de sierra. Se
presenta el uso del osciloscopio para visualizar y
medir formas de onda. Se examina el uso de fasores
para representar ondas seno.
Introducción
F IGURA P–1
Apertura de capítulo típica.
Manual de recursos para el instructor Incluye soluciones a problemas de cada capítulo, a las
secciones Una aplicación de circuito (A Circuit Application), un archivo de examen, un archivo
de circuito Multisim resumido, y soluciones a ambos manuales de laboratorio. Disponible en el
sitio Web.
Prentice Hall Test Gen
Es un banco de exámenes computarizado, disponible en línea.
Ilustración de las características de los capítulos
Apertura de capítulo Cada capítulo comienza como se muestra en la figura P-1. Cada apertura de capítulo incluye número y título de éste, las secciones del texto y objetivos del capítulo,
una lista de términos clave, descripción previa de Una aplicación de circuito, referencia a una
sección del sitio Web y una breve introducción.
Apertura de sección Cada sección incluida en un capítulo inicia con una breve introducción
que describe el tema en general y los objetivos. La figura P-2 muestra un ejemplo.
Repaso de sección Cada sección concluye con un repaso, consistente en preguntas o ejercicios que resaltan los principales conceptos estudiados. La parte superior de la figura P-2 muestra
un ejemplo. Al final del capítulo se dan las respuestas correspondientes.
Ejemplos resueltos y problemas relacionados A lo largo de cada capítulo, numerosos ejemplos resueltos sirven para ilustrar y aclarar conceptos básicos o procedimientos específicos. Cada
ejemplo finaliza con un Problema relacionado que refuerza o amplía el ejemplo al requerir que
el estudiante resuelva otro problema similar. Los ejemplos seleccionados incluyen un ejercicio de
circuito Multisim. La figura P-3 muestra un ejemplo resuelto típico y su Problema relacionado.
◆
VII
VIII
◆
P REFACIO
FIGURA P–2
Apertura típica y repaso de una
sección.
Cada sección concluye
con preguntas de repaso
◆
178
C IRCUITOS
REPASO DE LA
SECCIÓN 6-2
EN PARALELO
1.
Un resistor de 10 Æ y uno de 22 Æ están conectados en paralelo a una fuente de 5 V. ¿Cuál
es el voltaje a través de cada uno de los resistores?
2.
En la figura 6-10 está conectado un voltímetro a través de R1. El voltímetro lee 118 V. Si usted lo cambia de lugar y lo conecta a través de R2, ¿cuánto voltaje indicará? ¿Cuál es el voltaje de fuente?
3.
4.
En la figura 6-11, ¿cuánto voltaje indica el voltímetro 1? ¿El voltímetro 2?
¿Cómo están relacionados los voltajes a través de cada rama de un circuito en paralelo?
V2
R1
VS
V
R2
50 V
R1
R2
V1
6–3
Cada sección inicia con
un párrafo introductorio
Objetivos de la sección
basados en el desempeño
L EY
FIGURA 6–10
DE L AS CORRIENTES DE
FIGURA 6–11
K IRCHHOFF
La ley del voltaje de Kirchhoff se ocupa de los voltajes presentes en una sola trayectoria cerrada. La ley de la corriente de Kirchhoff es aplicable a corrientes que circulan por múltiples
trayectorias.
Después de completar esta sección, usted debe ser capaz de:
◆
Aplicar la ley de las corrientes de Kirchhoff
◆
Enunciar la ley de las corrientes de Kirchhoff
◆
Definir el término nodo
◆
Determinar la corriente total sumando las corrientes de cada rama
◆
Determinar una corriente desconocida que circula por una rama
La ley de las corrientes de Kirchhoff, abreviada a menudo como KCL, por sus siglas en inglés, puede ser enunciada como sigue:
La suma de las corrientes que entran a un nodo (corriente total de entrada) es igual a la
suma de las corrientes que salen de dicho nodo (corriente total de salida).
Un nodo es cualquier punto o unión en un circuito donde dos o más componentes están conectados. En un circuito en paralelo, un nodo o unión es un punto donde se juntan las ramas dispuestas en paralelo. Por ejemplo, en el circuito de la figura 6-12, el punto A es un nodo y el punto
B otro nodo. Inicie en la terminal positiva de la fuente y siga la corriente. La corriente total IT que
viene de la fuente entra al nodo A. En este punto, la corriente se divide entre las tres ramas como
se indica. Cada una de las tres corrientes de rama (I1, I2 e I3) sale del nodo A. La ley de las corrientes de Kirchhoff establece que la corriente total que entra al nodo A es igual a la corriente total que sale del nodo A; es decir,
IT = I1 + I2 + I3
Ahora, cuando se siguen las corrientes mostradas en la figura 6-12 a través de las tres ramas,
se advierte que regresan al nodo B. Las corrientes I1, I2 e I3 se encuentran en el nodo B e IT sale
FIGURA P–3
A NÁLISIS
Ejemplo resuelto típico y su
Problema relacionado.
DE CIRCUITOS RESISTIVOS EN SERIE - PARALELO
◆
235
Corrientes de rama
Con la fórmula del divisor de corriente, la ley de la corriente de Kirchhoff, la ley de Ohm, o mediante combinaciones de éstas, se puede calcular la corriente en cualquier rama de un circuito en
serie-paralelo. En algunos casos, posiblemente se requiera la aplicación repetida de la fórmula
para encontrar una corriente dada. Los dos ejemplos siguientes ayudarán a entender el procedimiento. (Observe que los subíndices para las variables de corriente (I) concuerdan con los subíndices de R; por ejemplo, la corriente a través de R1 se designa como I1.)
EJEMPLO 7–8
Encuentre la corriente a través de R2 y de R3 en la figura 7-19.
R1
IT
VS
Los ejemplos se ponen
aparte del texto
Solución
22 V
A
1.0 k⍀
R2
2.2 k⍀
R3
3.3 k⍀
FIGURA 7–19
En primer lugar, identifique la relación serie-paralelo. A continuación, determine cuánta corriente entra al nodo A. Ésta es la corriente total. Para determinar IT, se debe conocer RT.
RT = R1 +
R2R3
(2.2 kÆ)(3.3 kÆ)
= 1.0 kÆ + 1.32 kÆ = 2.32 kÆ
= 1.0 kÆ +
R2 + R3
2.2 kÆ + 3.3 kÆ
VS
22 V
IT =
=
= 9.48 mA
RT
2.32 kÆ
Cada ejemplo contiene un
Problema relacionado
pertinente al ejemplo
Para determinar la corriente a través de R2, aplique la regla del divisor de corriente para dos
ramas como se dio en el capítulo 6.
I2 = a
R3
3.3 kÆ
b9.48 mA = 5.69 mA
bI = a
5.5 kÆ
R2 + R3 T
Ahora aplique la ley de la corriente de Kirchhoff para determinar la corriente a través de R3.
IT = I2 + I3
I3 = IT - I2 = 9.48 mA - 5.69 mA = 3.79 mA
Problema relacionado
Los ejemplos seleccionados
hacen referencia a un
archivo de circuito
Multisim relacionado
Se conecta un resistor de 4.7 kÆ en paralelo con R3 en la figura 7-19. Determine la corriente
a través del nuevo resistor.
Use el archivo Multisim E07-08 para verificar los resultados calculados en este ejemplo y para confirmar su cálculo en el problema relacionado.
P REFACIO
◆
U NA
765
Function Generator
kHz
Freq
Amp
Offset
Period
HiLevel
LoLevel
Graph
Local
REPASO DE LA
SECCIÓN 17-9
1.
Sine
Square
Tri
Pulse
Noise
Arb
Mod
Sweep
Burst
Store/
Recall
Utility
Help
En general, ¿por qué es necesario un filtro sintonizado cuando se acopla una señal proveniente de una antena a la entrada de un receptor?
¿Qué es una trampa de ondas?
¿Qué significa sintonización en grupo?
2.
3.
7
8
4
5
1
2
3
0
.
+/–
◆
767
9
6
Sync
Trigger
Output
Output
A
A/B OUTPUTS
Triple Output Power Supply
PARALLEL
POWER
A
ON
SERIES
Una aplicación de circuito
+
A
0 20V 0.5A
B
0 20V 0.5A
OVERLOAD
–
MIN
–
B
C
D
VOLTAGE
MAX
MIN
CURRENT
OVERLOAD
+
MAX
CURRENT
+
MIN
cia para luego convertir dicha frecuencia en una intermedia estándar (FI). Las estaciones de radio de AM transmiten en el intervalo
de frecuencias de 535 a 1605 kHz. El propósito del amplificador de
RF es tomar las señales captadas por la antena, rechazar todas las
señales excepto la señal de la estación deseada, y amplificarla a
un nivel más alto.
En la figura 17-55 se muestra un diagrama esquemático de un
amplificador de RF. El circuito de sintonización resonante en paralelo se compone de L, C1 y C2. Este amplificador de RF en particular no dispone de un circuito resonante en la salida. C1 es un
varactor, el cual es un dispositivo semiconductor sobre el que usted
aprenderá más en un curso posterior. Todo lo que necesita saber
en este momento es que el varactor es básicamente un capacitor
variable cuya capacitancia varía al cambiar el voltaje de cd presente entre sus terminales. En este circuito, el voltaje de cd pro-
B
VOLTAGE
B
OVERLOAD
–
–
INDEPENDENT
A
V
5V 2A
OFF
En la aplicación de circuito del capítulo 11, se trabajó con un sistema receptor para aprender mediciones básicas
de ca. En este capítulo, se utiliza otra
vez el receptor para ilustrar una aplicación de circuitos resonantes. Nos enfocaremos en una parte del
“extremo frontal” del sistema receptor que contiene circuitos resonantes. En general, el extremo frontal incluye el amplificador
de RF, el oscilador local y el mezclador. En esta aplicación de circuito, el amplificador de RF es el foco. Por ahora no es necesario
tener conocimientos de circuitos amplificadores.
En la figura 17-54 se muestra un diagrama de bloques básico
para un receptor de radio de AM. En este sistema particular, el
“extremo frontal” incluye los circuitos utilizados para sintonizar
una estación transmisora deseada mediante selección de frecuen-
APLIC ACIÓN DECIRCUITO
MAX
MIN
MAX
E
1
2
V
Ajuste 1
V
Ajuste 2
V
L
Ajuste 3
C2
Salida B
(D
y
E)
V
Ajuste 4
.01
3
Fuente de potencia
C1
C3
V
0.1
APLIC ACIÓN DECIRCUITO
convertida a la FI de 455 kHz. El amplificador de frecuencia intermedia, el cual se sintoniza a
455 kHz, amplifica la frecuencia intermedia de amplitud modulada. La salida del amplificador de
frecuencia intermedia se aplica a un detector de audio que elimina la frecuencia intermedia y deja
sólo la envolvente, que es la señal de audio. La señal de audio es entonces amplificada y aplicada al altavoz.
.01
U NA
Una serie de actividades relaciona la teoría con la práctica
470
Una aplicación de circuito está incorporada aparte del texto
4
5
Ajuste 5
SAVE/RECALL
MEASURE
AUTOSET
ACQUIRE
MENUS
UTILITY
CURSOR
Antena
DISPLAY
VERTICAL
POSITION
POSITION
HARDCOPY
RUN/STOP
HORIZONTAL
TRIGGER
POSITION
LEVEL
MATH
MENU
CURSOR 1
CURSOR 2
CH 1
MENU
CH 2
MENU
HOLDOFF
TRIGGER MENU
HORIZONTAL
MENU
SET LEVEL TO 50%
Mezclador
VOLTS/DIV
VOLTS/DIV
5V
5V
SEC/DIV
FORCE TRIGGER
Control de volumen
Detector
TRIGGER VIEW
Amplificador
de RF
Amplificador de FI
Altavoz
Preamplificador
de audio
Oscilador
local
Ch 1 0.2V
1ms
5V
FIGURA 17–54
Diagrama de bloques simplificado de un receptor básico de radio.
CH 1
2 mV
CH 2
5s
5 ns
EXT TRIG
Amplificador de
potencia de audio
“Extremo frontal”
PROBE COMP
2 mV
F
FIGURA 17–57
Disposición de un banco de prueba.
Gráficos realistas de un instrumento y una tarjeta
de circuito
FIGURA P–4
Parte de Una aplicación de circuito típica.
Secciones de Localización de fallas Muchos capítulos incluyen una sección de Localización
de fallas relacionada con los temas tratados en el capítulo y que pone de relieve el razonamiento
lógico, así como un método estructurado llamado APM (análisis, planificación y medición) en
los casos en que es aplicable. Cuando se considera apropiado, se aplican métodos particulares para la reparación de fallas, tales como división a la mitad.
Una aplicación de circuito Esta sección especial al final de cada capítulo (excepto en Caps. 1
y 21) presenta una aplicación práctica de algunos temas estudiados en el capítulo. Cada una de
estas aplicaciones incluye una serie de actividades, muchas de las cuales implican comparar diseños de tarjetas de circuito con esquemas, analizar circuitos utilizando mediciones para determinar su operación y, en algunos casos, desarrollar procedimientos de prueba simples. Los
resultados y las respuestas se encuentran en el Manual de recursos para el instructor. La figura P-4
ilustra una parte representativa de la sección Una aplicación de circuito.
Material al final de cada capítulo Los siguientes elementos pedagógicos se encuentran al
término de cada capítulo:
◆
Resumen
◆
Glosario de términos clave
◆
Lista de fórmulas
◆
Autoevaluación
◆
Examen de dinámica de circuitos
◆
Problemas
◆
IX
X
◆
P REFACIO
◆
Respuestas a repasos de sección, problemas relacionados con ejemplos, autoevaluación, y
al examen de dinámica de circuitos
Sugerencias para la enseñanza con el libro Principios de circuitos eléctricos
Énfasis en el curso seleccionado y flexibilidad del texto Este libro de texto está diseñado
principalmente para usarse en un curso de dos semestres, en el cual los temas de corriente directa (Caps. 1 a 10) se imparten durante el primer semestre y los de corriente alterna (Caps. 11 a 21)
en el segundo semestre. Estructurar un curso de un semestre que abarque los temas de ca y cd es
posible, pero requeriría de una cobertura muy selectiva y abreviada de muchos temas.
Si las limitaciones de tiempo o el énfasis en el curso restringen los temas que pueden ser cubiertos, como casi siempre ocurre, existen varias opciones para efectuar una cobertura selectiva.
Las siguientes sugerencias para el caso de un tratamiento ligero o alguna omisión no necesariamente implican que cierto tema sea menos importante que otros, sino que, en el contexto de un
programa específico, es probable que éste no requiera la atención impuesta a los temas fundamentales. Como el énfasis en el curso, el nivel y el tiempo disponible varían de un programa a
otro, la omisión o el tratamiento abreviado de temas seleccionados puede efectuarse sobre una
base individual. Por lo tanto, las siguientes sugerencias están formuladas sólo como guía general.
1. Capítulos que pueden ser considerados para omisión o cobertura selectiva:
◆
Capítulo 8, Teoremas de circuitos y conversiones
◆
Capítulo 9, Análisis de ramas, lazos y nodos
◆
Capítulo 10, Magnetismo y electromagnetismo
◆
Capítulo 18, Filtros pasivos
◆
Capítulo 19, Teoremas de circuitos en análisis de CA
◆
Capítulo 20, Respuesta en función del tiempo de circuitos reactivos
◆
Capítulo 21, Sistemas trifásicos en aplicaciones de potencia
2. Las secciones de Una aplicación de circuito y Localización de fallas pueden ser omitidas
sin afectar otro material.
3. Otros temas específicos pueden ser omitidos o cubiertos ligeramente sección por sección
a criterio del instructor.
El orden en el cual ciertos temas aparecen en el texto puede ser modificado a criterio del instructor. Por ejemplo, los temas sobre capacitores e inductores (Caps. 12 y 13) pueden ser cubiertos al
final del curso de corriente directa, en el primer semestre, retrasando la cobertura de los temas de
corriente alterna incluidos en las secciones 12-6, 12-7, 13-5, y 13-6 hasta el curso de corriente alterna, en el segundo semestre. Otra posibilidad es cubrir los capítulos 12 y 13 en el segundo semestre, pero el capítulo 15 (Circuitos RC) inmediatamente después del 12 (Capacitores), y el 16
(Circuitos RL) enseguida del 13 (Inductores).
Una aplicación de circuito Estas secciones son útiles para motivar y para introducir aplicaciones de conceptos y componentes básicos. Las siguientes son sugerencias sobre cómo utilizar
estas secciones:
◆
Como parte integral del capítulo para ilustrar las posibilidades de aplicación de los conceptos
y componentes en una situación práctica. Las actividades pueden ser asignadas como tarea.
◆
Como asignaciones de créditos extra.
◆
Como actividades en clase para promover el análisis y la interacción y ayudar a los estudiantes a entender por qué necesitan conocer el material.
Cobertura de circuitos reactivos Los capítulos 15, 16 y 17 fueron diseñados para proporcionar dos métodos de enseñanza de estos temas sobre circuitos reactivos.
P REFACIO
La primera alternativa es cubrir los temas con base en los componentes. Esto es, estudiar primero todo el capítulo 15 (Circuitos RC), acto seguido todo el capítulo 16 (Circuitos RL), y, por
último, todo el capítulo 17 (Circuitos RLC y resonancia).
La segunda alternativa es cubrir los temas con base en el tipo de circuito. Es decir, primero estudiar todos los temas relacionados con circuitos reactivos en serie, luego todos los temas de circuitos reactivos en paralelo, y, por último, todos los temas que se refieren a circuitos reactivos en
serie-paralelo. Para facilitar este segundo método, cada capítulo está dividido en las siguientes
partes: Parte 1: Circuitos en serie, Parte 2: Circuitos en paralelo, Parte 3: Circuitos en serie-paralelo, y Parte 4: Temas especiales. Por lo tanto, para circuitos reactivos en serie, se cubre la Parte 1 de los tres capítulos en secuencia. Para circuitos reactivos en paralelo, la Parte 2 de los tres
capítulos en forma sucesiva. En el caso de circuitos reactivos en serie-paralelo, cubra la Parte 3
de los tres capítulos en secuencia. Finalmente, estudie la Parte 4 de los tres capítulos.
Para el estudiante
Cualquier carrera demanda trabajo duro, la de electrónica no es excepción. La mejor manera de
aprender un material nuevo es leyendo, pensando y realizando. Este texto está diseñado para ayudarle a lo largo de todo el camino ya que proporciona las generalidades y los objetivos de cada
sección, numerosos ejemplos resueltos, ejercicios, y preguntas de repaso.
Lea cada sección del texto con cuidado y medite lo que ha leído. Es posible que ocasionalmente necesite leer la sección más de una vez. Resuelva cada problema de ejemplo paso a paso antes
de abordar el problema relacionado. Después de cada sección responda las preguntas de repaso.
Las respuestas a los problemas relacionados y las preguntas de repaso de sección se encuentran
al final del capítulo.
Repase el resumen del capítulo, las definiciones de los términos clave y la lista de fórmulas.
Realice la autoevaluación de opción múltiple y el examen de dinámica de circuitos. Verifique sus
respuestas contra las que aparecen al final del capítulo. Por último, resuelva los problemas. La resolución de problemas es la manera más efectiva de verificar su comprensión y consolidar los
conceptos. Compruebe sus respuestas a los problemas de numeración impar con las proporcionadas al final del libro.
Carreras de electrónica
El campo de la electrónica es muy diverso, y las oportunidades de hacer carrera están disponibles en
muchas áreas. Dado que en la actualidad la electrónica se encuentra en tantas aplicaciones diferentes, y nueva tecnología está siendo desarrollada a un ritmo extremadamente rápido, su futuro parece
ilimitado. Difícilmente podría señalarse un área de nuestras vidas que no haya sido mejorada en cierto grado por la tecnología electrónica. Quienes adquieran un conocimiento sólido, básico, de los
principios eléctricos y electrónicos y deseen continuar aprendiendo siempre estarán en demanda.
La importancia de alcanzar un completo entendimiento de los principios básicos contenidos
en este texto no puede ser sobreestimada. La mayoría de los empleadores prefiere contratar personal que posea tanto fundamentos sólidos como capacidad y deseo de aprender técnicas y conceptos nuevos. Si usted está bien preparado en lo fundamental, cualquier empleador lo capacitará
en los puntos específicos del trabajo al cual sea asignado.
Existen muchos tipos de clasificaciones laborales para los que una persona con entrenamiento en electrónica puede calificar. Algunas de las funciones de trabajo más comunes se describen
con brevedad en los párrafos siguientes.
Técnico de taller de servicio En esta categoría, el personal técnico interviene en la reparación
o el ajuste de equipo electrónico tanto comercial como doméstico que es regresado al distribuidor o fabricante para servicio. Algunas áreas específicas incluyen televisiones, videocaseteras,
reproductores de CD y DVD, equipo estéreo, radios de banda civil y computadoras. Esta área
también ofrece oportunidades de autoempleo.
Técnico en manufactura industrial El personal de manufactura participa en la evaluación de
productos electrónicos al nivel de línea de ensamble, o en el mantenimiento y la reparación de fallas de sistemas electrónicos y electromecánicos utilizados en la evaluación y manufactura de
productos. Casi todo tipo de planta de manufactura, sin importar su producto, utiliza equipo automático electrónicamente controlado.
◆
XI
XII
◆
P REFACIO
Técnico laboratorista Estos técnicos intervienen en la creación de tarjetas experimentales,
prototipos y evaluación de sistemas electrónicos nuevos o modificados en laboratorios de investigación y desarrollo. En general, trabajan codo a codo con los ingenieros en la fase de desarrollo de un producto.
Técnico de servicio de campo El personal de servicio de campo da servicio y repara equipo
electrónico, por ejemplo, sistemas de computación, instalaciones de radar, equipo automático de
operaciones bancarias y sistemas de seguridad —en las instalaciones del usuario.
Asistente de ingeniería/Ingeniero asociado El personal ubicado en esta categoría trabaja estrechamente con los ingenieros en la implementación de un concepto y en el diseño y desarrollo
básicos de sistemas electrónicos. Los asistentes de ingeniería con frecuencia intervienen en un
proyecto desde su diseño inicial hasta las primeras etapas de manufactura.
Escritor técnico Los escritores técnicos recopilan información y luego la utilizan para escribir
y producir manuales y material audiovisual. Un conocimiento amplio de un sistema en particular y
la capacidad de explicar con claridad sus principios y operación resultan esenciales.
Ventas técnicas Las personas técnicamente entrenadas son demandadas como representantes
de ventas de productos de alta tecnología. La habilidad tanto para entender conceptos técnicos de
un producto como para comunicarlos a un cliente potencial es muy valiosa. En esta área, igual
que en la anterior, ser competente en la expresión oral y escrita es esencial. En realidad, tener la
habilidad para comunicarse bien es muy importante en cualquier trabajo técnico porque se debe
ser capaz de registrar datos con claridad y de explicar procedimientos, conclusiones y acciones
emprendidas de modo que otros puedan entender lo que se está haciendo.
Eventos significativos en el campo de la electrónica
B I O G R A F Í A
Georg Simon Ohm
1787–1854
Ohm nació en Bavaria y
luchó por años para que le
fuese reconocido su trabajo
en la formulación de la
relación de corriente,
voltaje y resistencia. Esta
relación matemática se
conoce hoy en día como la
ley de Ohm, y la unidad de
resistencia fue nombrada
ohm en su honor. (Crédito de
la fotografía: Biblioteca del
Congreso estadounidense,
LC-USZ62-40943.)
Antes de iniciar el estudio de circuitos eléctricos, daremos un vistazo a algunos de los importantes
desarrollos que condujeron a la tecnología electrónica de la actualidad. Los nombres de muchos de los pioneros en el campo de la electricidad y la electromagnética aún persisten en términos
de unidades y cantidades conocidas. Nombres como Ohm, Ampere, Volta, Farad, Henry, Coulomb,
Oersted, y Hertz son algunos de los ejemplos mejor conocidos. Otros más ampliamente conocidos, tales como Franklin y Edison, también resultan significativos en la historia de la electricidad
y la electrónica debido a sus extraordinarias contribuciones. Biografías cortas de algunos de estos pioneros, como la aquí mostrada, se encuentran en todo el texto.
El inicio de la electrónica Los primeros experimentos con la electrónica implicaron corrientes
eléctricas en tubos de vacío. Heinrich Geissler (1814-1879) extrajo la mayor parte del aire contenido en un tubo de vidrio y encontró que el tubo brillaba cuando era atravesado por una corriente.
Posteriormente, Sir William Crookes (1832-1919) se dio cuenta de que en tubos de vacío la corriente parecía estar compuesta por partículas. Thomas Edison (1847-1931) experimentó con bulbos
de filamento de carbón con placas y descubrió que había una corriente del filamento caliente hacia una carga positivamente cargada. Patentó la idea pero nunca la utilizó.
Otros precursores de la experimentación midieron las propiedades de las partículas que fluían
en tubos de vacío. Sir Joseph Thompson (1856-1940) midió las propiedades de estas partículas,
llamadas más tarde electrones.
Aunque la comunicación telegráfica inalámbrica se remonta a 1844, la electrónica es básicamente un concepto del siglo XX, que se inició con la invención del amplificador de tubo de vacío.
En 1904, John A. Fleming construyó un tubo de vacío que permitía el flujo de corriente en una
sola dirección. Llamado válvula Fleming, fue el precursor de los diodos de tubos de vacío. En
1907, Lee deForest agregó una rejilla al tubo de vacío. El nuevo artefacto, llamado audiotrón, podía amplificar una señal débil. Al agregar el elemento de control, deForest se colocó a la vanguardia de la revolución electrónica. Gracias a una versión mejorada de su artefacto los servicios de
telefonía transcontinental y de radio fueron posibles. En 1912 en San José, California, ¡un radio
aficionado transmitía música con regularidad!
En 1921 el secretario de comercio estadounidense, Herbert Hoover, expidió la primera licencia
para una estación de radio; al cabo de dos años más de 600 licencias fueron expedidas. A finales
de los años de 1920 en muchos hogares ya había aparatos de radio. Un nuevo tipo de radio, el superheterodino, inventado por Edwin Armstrong, resolvió los problemas que se presentaban con
P REFACIO
la comunicación de alta frecuencia. En 1923 Vladimir Zworykin, un investigador estadounidense, inventó el primer tubo de imagen de televisión, y en 1927 Philo T. Farnsworth solicitó una patente para un sistema de televisión completo.
La década de 1930 contempló muchos desarrollos en la radio, incluyendo los tubos metálicos,
el control de ganancia automático, “miniaparatos” (de radio), antenas direccionales y más. En esta
década también se inició el desarrollo de las primeras computadoras electrónicas. Las computadoras modernas remontan sus orígenes al trabajo de John Atanasoff en Iowa State University. Comenzando en 1937, ideó una máquina binaria que podía realizar trabajos matemáticos complejos.
En 1939, Atanasoff y el estudiante graduado Clifford Berry construyeron una máquina binaria
llamada ABC (por Atanasoff-Berry Computer) que utilizaba tubos de vacío para la lógica y condensadores (capacitores) para memoria. En 1939, el magnetrón, un oscilador de microondas, fue
inventado en Inglaterra por Henry Boot y John Randall. En el mismo año, el tubo de microondas
klistrón fue inventado en Estados Unidos por Russell y Sigurd Varian.
Durante la Segunda Guerra Mundial, la electrónica se desarrolló con rapidez. El magnetrón y
el klistrón hicieron posible la fabricación del radar y la comunicación de muy alta frecuencia. Los
tubos de rayos catódicos fueron mejorados para utilizarse en sistemas de radar. El desarrollo de la
computadora continuó durante la guerra. En 1946, John von Neumann desarrolló la primera computadora capaz de guardar programas, la ENIAC, en la Universidad de Pennsylvania. La década finalizó con una de las invenciones más importantes que alguna vez se haya realizado: el transistor.
Electrónica de estado sólido Los detectores de cristal utilizados en los primeros aparatos de
radio fueron los precursores de los modernos instrumentos de estado sólido. Sin embargo, la era
de la electrónica de estado sólido comenzó con la invención del transistor en 1947 en los laboratorios Bell. Los inventores fueron Walter Brattain, John Bardeen y William Shockley. Las tarjetas de circuito impreso fueron introducidas en 1947, el año en que se inventó el transistor. La
fabricación comercial de transistores comenzó en Allentown, Pennsylvania, en 1951.
La inversión más importante en la década de 1950 fue el circuito integrado. El 12 de septiembre de 1958, en Texas Instruments, Jack Kilby realizó el primer circuito integrado. Esta invención
literalmente creó la era de la computadora y provocó arrolladores cambios en campos como el
de la medicina, las comunicaciones, la manufactura y la industria del entretenimiento. Muchos
miles de millones de “chips” —como se los llamó a los circuitos integrados— se han fabricado
desde entonces.
La década de 1960 fue testigo del inicio de la carrera espacial y estimuló el desarrollo de la
miniaturización y las computadoras. La carrera espacial se constituyó en la fuerza impulsora de
los rápidos cambios que siguieron. El primer “amplificador operacional” lo diseñó Bob Widlar
en Fairchild Semiconductor en 1965. Llamado A709, resultó muy exitoso, pero sufría de “bloqueo” y otros problemas. Más tarde, el amplificador operacional más popular que alguna vez se
haya construido, el 741, fue tomando forma en Fairchild. El 741 se convirtió en el estándar de la
industria e influyó en el diseño de los amplificadores operacionales de los siguientes años.
Hacia 1971, una nueva compañía que había sido formada por un grupo proveniente de Fairchild introdujo el primer microprocesador. Esta empresa fue Intel y el producto el chip 4004, el
cual tenía igual potencia de procesamiento que la computadora Eniac. Posteriormente en el mismo año, Intel dio a conocer el primer procesador de 8 bits, el 8008. En 1975, la primera computadora personal fue introducida por Altair, y apareció en la portada del número de enero de 1975
de la revista Popular Science. La década de 1970 también atestiguó la introducción de la calculadora de bolsillo y de nuevos desarrollos de circuitos ópticos integrados.
Durante la década de 1980, la mitad de los hogares estadounidenses utilizaba conexiones de
cable en lugar de antenas de televisión. La confiabilidad, velocidad y miniaturización de artefactos electrónicos continuó, incluyendo la evaluación y calibración automáticas de tarjetas de circuito impreso. La computadora se convirtió en parte de la instrumentación y fue creado el objeto
virtual. La computadoras devinieron en el estándar en el banco de trabajo.
Los años de la década de 1990 atestiguaron la amplia aplicación de Internet. En 1993 había 130
sitios Web; ahora hay millones. Las compañías se peleaban por establecer una página de inicio y
muchos de los primeros desarrollos de transmisión radial ocurrieron en paralelo con Internet. En
1995, la FCC asignó espacio espectral para un nuevo servicio llamado Servicio de Radio de Audio
Digital (Digital Audio Radio Service). Hacia 1996, la FCC adoptó estándares de televisión digital
para la siguiente generación de transmisiones televisivas.
◆
XIII
XIV
◆
P REFACIO
El siglo XXI vio la luz en enero de 2001. Uno de los