Download 7.2.1 Formulación de los criterios de divisibilidad entre 2, 3 y 5

Document related concepts

Triángulo wikipedia , lookup

Circunferencia de los nueve puntos wikipedia , lookup

Circunferencia inscrita y exinscrita en un triángulo wikipedia , lookup

Polígono regular wikipedia , lookup

Circunferencia circunscrita wikipedia , lookup

Transcript
MATEMÁTICAS I SEGUNDO BIMESTRE Contenido: 7.2.1 Formulación de los criterios de divisibilidad entre 2, 3 y 5. Distinción entre números primos y compuestos. Intenciones didácticas: Que los alumnos formulen los criterios de divisibilidad por 2, 3 y 5, y que identifiquen las características de los números primos y compuestos. Consigna: resuelvan los siguientes problemas. 1. El ingeniero José es supervisor de obras públicas en el municipio de Tecámac, en el estado de México. Dentro de sus funciones está el organizar las cuadrillas que tienen que ir a realizar las obras públicas. Actualmente el ingeniero trabaja con dos grupos; el primer grupo atiende al lado oriente del municipio y el segundo grupo al poniente. El primer grupo lo conforman 50 integrantes y el segundo grupo 47. Ambos grupos han solicitado que las cuadrillas se organicen de tal forma que todas estén integradas con la misma cantidad de trabajadores y que no haya excepciones. a. ¿Cuántas cuadrillas diferentes se pueden formar con el primer grupo? b. ¿Cuántas cuadrillas diferentes se pueden formar con el segundo grupo? c. Si reúne a los trabajadores del grupo 1 y 2 para hacer un solo grupo y reorganizar las cuadrillas ¿cuántas cuadrillas diferentes se pueden formar? 2. Si 30 x 45 = 1350: a. Escriban cuatro números diferentes a 30 y 45 que sean divisores de 1 350. b. Los números 9, 6 y 15, ¿son divisores de 1 350? c. En caso de que 9, 6 y 15 sean divisores, ¿por cuál número o números se tendrían que multiplicar cada uno para obtener 1 350? d. Los números 4 y 7 son divisores de 1 350? ¿Por qué? 3. Con base en la siguiente tabla contesten lo que se solicita: 1160 4758 7299 1981 151515 1620 35532 6264 4431 52380 489 166 a. ¿Cuáles números son divisibles por 2, por 3 y por 5? b. ¿Qué características debe tener un número para que sea divisible por 2, por 3 y por 5? c. ¿Hay números que tengan más de un divisor? ¿Cuáles? Consigna 2: 1. ¿La suma de tres números naturales consecutivos cualesquiera siempre es divisible por 3? ¿Por qué? 2. ¿La suma de cinco números naturales consecutivos cualesquiera siempre es divisible por 5? ¿Por qué? 3. ¿La siguiente afirmación es correcta? “La suma de dos números naturales consecutivos cualesquiera es divisible por 2” De ser verdad justifiquen la respuesta, de lo contrario reescriban la afirmación de tal manera que sea verdadera y escriban algunos ejemplos. Contenido: 7.2.2 Resolución de problemas que impliquen el cálculo del máximo común divisor y el mínimo común múltiplo. Intenciones didácticas. Que los alumnos resuelvan problemas que impliquen el cálculo del mínimo común múltiplo, empleando el producto de los factores primos.  Encuentren el MCM de los siguientes números: 225, 300
380, 420
18, 24, 36
MCM = ______________ MCM = ____________ 25, 75, 125
MCM = ___________ 60, 75, 90
140, 325, 490
MCM = ______________ MCM = ____________ MCM = ___________  ¿El m.c.m de dos números primos es el producto de ellos mismos? Justifiquen su respuesta.  Un faro se enciende cada 12 segundos, otro cada 18 segundos y un tercero cada minuto. A las 7:15 de la tarde los tres coinciden. ¿Cuántas veces volverán a coincidir en los próximos cinco minutos y a qué horas? 


Un autobús A hace su recorrido cada 8 días y otro autobús B lo hace cada 10 días. Si coinciden en su salida en la central de autobuses el día 20 de noviembre, ¿cuándo volverán a coincidir? Carmen tiene un reloj despertador que suena cada 60 minutos, otro reloj despertador que suena cada 150 minutos y un tercero que suena cada 360 minutos. A las 6 de la mañana los tres relojes suenan al mismo tiempo. ¿A qué hora volverán a sonar otra vez juntos? Cierto planeta A tarda 150 días en completar una órbita completa alrededor de su sol. Otro planeta B del mismo sistema solar lo hace en 225 días. Si cierto día ambos planetas están alineados con el sol, ¿cuánto tardarán en volver a estarlo? Consigna 2: resuelvan los siguientes problemas: 1. Se quiere cortar dos tablones de madera, uno de 48 cm y el otro de 60 cm, en tablas de la mayor longitud posible y que midan lo mismo, sin que sobre madera de ninguno de los tablones. a) ¿Cuánto medirá cada una de las partes? b) ¿Cuántas tablas se pueden sacar? 2. Se desea cubrir con azulejos cuadrados una pared de una cocina que mide 210 cm de ancho por 300 cm de alto. Si se quiere que los azulejos sean lo más grande posible y que no haya que romper ninguno, ¿cuál debe ser la medida por lado de los azulejos? 3. En una bodega hay 3 barriles de vino, cuyas capacidades son: 250 l, 360 l, y 540 l. Su contenido se quiere envasar en cierto número de garrafas iguales. Calcular las capacidades máximas de estas garrafas para que en ellas se puedan envasar todo el vino contenido en cada uno de los barriles, y el número de garrafas que se necesitan. 4. Un comerciante desea poner en cajas 12 028 manzanas y 12 772 peras, de modo que cada caja contenga el mismo número de manzanas o de peras y, además, el mayor número posible. Hallar el número de manzanas o de peras en cada caja y el número de cajas necesarias.  Encuentren el M.C.D de los siguientes números: 225, 300
380, 420
18, 24, 36
M.C.D. = ______________ M.C.D. = ____________ M.C.D. = ___________ 25, 75, 125
60, 75, 90
140, 325, 490
M.C.D. = ______________ M.C.D. = ____________ M.C.D. = ___________  Se requiere embaldosar un patio de 1 620 cm de largo por 980 cm de ancho con baldosas cuadradas lo más grandes posibles y enteras. ¿Cuál será la longitud del lado de cada baldosa?  Una fracción de cartulina mide 1 m por 45 cm y se quiere dibujar en ella una cuadrícula del mayor tamaño posible cada cuadrado. ¿Cuál debe ser la medida de cada cuadrado de la cuadrícula?  De un pliego rectangular de foami que mide 96 cm de largo por 72 cm de ancho, se quiere cortar cuadrados de la mayor superficie posible. ¿Cuál debe ser la longitud del lado de los cuadrados? ¿Cuántos cuadrados se pueden obtener? Contenido: 7.2.3 Resolución de problemas aditivos en los que se combinan números fraccionarios y decimales en distintos contextos, empleando los algoritmos convencionales. Intenciones didácticas: Que los alumnos realicen estimaciones de problemas aditivos que combinan fracciones y números decimales y que reflexionen sobre la pertinencia o no de hacer únicamente una estimación. Consigna 1: resuelvan los siguientes problemas. 1. Estima el resultado de las siguientes operaciones: a)
1
8
 2.95 
 15
40
b)
6
1
 1.95   0.23  0.1  8
9
Consigna 2: Organizados en equipos resuelvan los siguientes problemas: 1. Karla tiene problemas con su columna y el médico le recomendó no cargar pesos superiores a 5.5 kg. El fin de semana Karla fue al mercado y cargó los siguientes artículos: 1 2/5 kg de naranjas, 580 gramos de jamón, 1/5 de kg de queso, 1.2 kg de pollo, ¾ de kg de carne, una lata de rajas de 425 gramos, un jabón de tocador de 125 gramos y ½ kg de tortillas. ¿Respetó Karla la indicación de su médico?____________ ¿Cuál es la diferencia entre la recomendación del médico y lo que cargó? __________________________ 2. Encuentren el número faltante en las siguientes operaciones: 10
1
 __   1.6   5.8 4
2
5
1
1
 0.3   __   2 b.
6
9
2
a. 0.8 
Consigna 3: 4
3
de onza, ¿cuál es el peso de de tableta? 7
4
3
1
b) Una botella cuya capacidad es 1 litros, contiene agua hasta sus partes. ¿Qué cantidad 2
5
a) Una tableta de una medicina pesa de agua contiene? Consigna 4: resolver los siguientes problemas: a) Un rectángulo tiene de área 7
2
y sabemos que uno de sus lados mide . ¿Cuánto medirá el 3
5
otro lado? b) Un rectángulo tiene de área 15
5
y sabemos que uno de sus lados mide . ¿Cuánto medirá el 40
8
otro lado? c) Un granjero colocó una cerca alrededor de su parcela para que no entraran los animales a comerse sus verduras. La parcela es de forma cuadrada, cada lado mide 10 m, si puso los postes cada 3
de metro, ¿cuántos postes colocó? 4
Eje temático: FE y M Contenido: 7.2.5 Resolución de problemas geométricos que impliquen el uso de las propiedades de la mediatriz de un segmento y la bisectriz de un ángulo. Intenciones didácticas: Que los alumnos:  Utilicen los conceptos de recta, segmento, semirrecta; perpendicular y punto medio.  Elaboren definiciones de mediatriz de un segmento y busquen maneras de trazarla. Consigna 1: Dados los siguientes segmentos, traza una recta perpendicular a cada uno, de tal manera que los divida en dos partes iguales. Señala con la letra que quieras el punto donde se cortan los dos segmentos. J
B
Q
P
A
C
K
D
a) La recta que trazaste en cada caso se conoce como “mediatriz” del segmento dado. Escribe una definición de mediatriz. Consigna 2: Traza la mediatriz de cada segmento y marca un punto cualquiera sobre la mediatriz que trazaste. Después, une los extremos del segmento dado con el punto marcado sobre la mediatriz. a) ¿Qué tipo de triángulo se formó en cada caso? b) ¿Todos los triángulos que formaste tienen la misma altura?__________ ¿Por qué? c) Si las distancias de cada extremo del segmento dado al punto marcado sobre la mediatriz fueran iguales, ¿qué tipo de triángulo se formaría? d) Tomando como base los segmentos anteriores, ¿se podrá formar un triángulo con tres lados de diferente medida? Justifica tu respuesta. Consigna 3: Traza un segmento cualquiera y su mediatriz y con ellos dibuja un rombo. a) ¿Es único el rombo que se puede construir con los segmentos que trazaste? Justifica tu respuesta. Intenciones didácticas: Que los alumnos:  Utilicen el concepto de ángulo.  Busquen maneras para trazar la bisectriz de un ángulo y elaboren la definición de bisectriz. Consigna 1: Traza una línea, de tal manera que cada ángulo quede dividido en dos ángulos de igual medida. a) A la línea que trazaron se le conoce con el nombre de “bisectriz” del ángulo. Escriban una definición para bisectriz. Consigna 2: Traza con algún color la bisectriz de los ángulos interiores de cada figura, con otro color las diagonales y con un color diferente la mediatriz de cada lado. a) ¿En qué casos coinciden las diagonales del polígono con las bisectrices de sus ángulos? b) ¿En qué casos coinciden las mediatrices y las bisectrices? c) Tracen un círculo que quede inscrito en cada uno de los polígonos anteriores. Contenido: 7.2.6 Justificación de las fórmulas de perímetro y área de polígonos regulares, con apoyo de la construcción y transformación de figuras. Intenciones didácticas. Que los alumnos calculen el perímetro y el área de polígonos regulares utilizando diferentes procedimientos. Consigna 1. Toma las medidas necesarias para calcular el perímetro y el área de cada una de las siguientes figuras: Triángulo equilátero
Cuadrado
Pentágono regular
Perímetro: ___________ Perímetro: ___________ Perímetro: ______________ Área: ___________ Área: ___________ Área: ______________ Consigna 2. Resuelve los siguientes problemas: 1. Con base en las siguientes figuras, escriban una fórmula para calcular el área del hexágono y otra para el octágono, utiliza como referencia los triángulos.
2. Escriban una fórmula para calcular el área de cualquier polígono regular. Eje temático: M I Contenido: 7.2.7 Identificación y resolución de situaciones de proporcionalidad directa del tipo “valor faltante” en diversos contextos, con factores constantes fraccionarios. Intenciones didácticas: Que los alumnos utilicen el factor constante de proporcionalidad entero y fraccionario para resolver problemas del tipo valor faltante, en los cuales los datos conocidos son enteros. Consigna 1: Los lados de un cuadrilátero miden 5, 9, 2 y 11 cm, tal como se muestra en la figura; si se realiza una reproducción a escala y el lado correspondiente a 5 cm, ahora mide 15 cm, ¿cuánto deben medir los demás lados? Utilicen la tabla para escribir las respuestas. 9
5
2
11
Medidas de los lados Medidas de los lados de la de la figura original reproducción 5 cm 15 cm 2 cm 9 cm 11cm Consigna 2: Consideren la situación de la consigna 1, con la diferencia de que el lado correspondiente a 9 cm, en la reproducción mide 3 cm, ¿cuánto deben medir los demás lados? Medidas de los lados Medidas de los lados de la de la figura original reproducción 9 cm 3 cm 2 cm 5 cm 11cm Consigna 3: Consideren la situación de la consigna 1, con la diferencia de que el lado correspondiente a 2 cm, en la reproducción mide 5 cm, ¿cuánto deben medir los demás lados? Medidas de los lados Medidas de los lados de la de la figura original reproducción 2 cm 5 cm 5 cm 9 cm 11cm Consigna 4: Consideren la situación de la consigna 1 del plan anterior, con la diferencia de que el lado de 5 cm, ahora mide 2.5 cm en la reproducción, ¿cuánto deben medir los demás lados? Medidas de los lados de la figura original 5 cm 2 cm 9 cm 11cm Medidas de los lados de la reproducción 2.5 cm Consigna 5: Consideren la situación de la consigna 1 del plan anterior, con la diferencia de que el lado de 9 cm, ahora mide 6.5 cm en la reproducción, ¿cuánto deben medir los demás lados? Pueden utilizar calculadora. Medidas de los lados Medidas de los lados de la de la figura original reproducción 9 cm 6.5 cm 2 cm 5 cm 11cm Consigna 6: Consideren la situación de la consigna 1 del plan anterior, con la diferencia de que el lado de 2 cm, ahora mide 2.8 cm en la reproducción, ¿cuánto deben medir los demás lados? Medidas de los lados Medidas de los lados de la de la figura original reproducción 2 cm 2.8 cm 5 cm 9 cm 11cm