Download el-enlace-quimico-para 11

Document related concepts

Reacción de Chugaev wikipedia , lookup

Ligando wikipedia , lookup

Complejo (química) wikipedia , lookup

Enlace de coordinación wikipedia , lookup

Catenación wikipedia , lookup

Transcript
EL ENLACE QUÍMICO
Enero 2007
Planteamiento del problema
1. La mina de un lápiz se compone de grafito y
arcilla. El grafito es una sustancia simple formada
por átomos de carbono. Existe otra sustancia
simple formada también por átomos de carbono
llamada diamante.
¿Cuál es la causa de que ambas sustancias
tengan propiedades tan distintas y sin embargo
estén formadas por el mismo tipo de átomo?
…
Planteamiento del problema
2. ¿Por qué los átomos se unen en unas
proporciones determinadas y no en otras?
¿Por qué NaCl y no Na2Cl?
3. ¿Por qué la molécula de CO2 es lineal y la del
H2O es angular?
4. ¿Qué es lo que determina las propiedades de
una sustancia: solubilidad, conductividad
eléctrica, estado de agregación a temperatura
ambiente…?
El estudio de las propiedades de las sustancias permite
establecer tres grandes grupos para clasificar la enorme
diversidad de sustancias:
Sustancia
Electrólito
No electrólito
Metálica
T fusión
T ebullición
↑
↓↓*
↑*
↑
↓↓
↓↓
↑
↓↓
↓
↓↓
↓↓
↑
↑
Solubilidad en
agua
otro disolvente
Conductividad
eléctrica
(sólido)
(líquido)
↓↓
↑
Las propiedades características de las
sustancias están relacionadas con la forma
en que están unidas sus partículas y las
fuerzas entre ellas, es decir, con el tipo de
ENLACE que existe entre sus partículas.
Una primera aproximación para
interpretar el enlace

A principios del siglo XX, el científico Lewis,
observando la poca reactividad de los gases
nobles (estructura de 8 electrones en su último
nivel),sugirió que los átomos al enlazarse
“tienden” a adquirir una distribución de
electrones de valencia igual a la
del gas noble más próximo
REGLA DEL OCTETO
Clasificación de los elementos de
acuerdo con la regla del octeto
 Metales:
baja electronegatividad, baja
energía de ionización. Tienden a soltar
electrones.
 No
metales: alta electronegatividad.
Tienden a coger electrones
Según el tipo de átomos que se
unen:
– No metal: uno cede y otro coge
electrones (cationes y aniones)
 Metal
metal – No metal: ambos cogen
electrones, comparten electrones
 No
 Metal
– Metal: ambos ceden electrones
Algunos ejemplos…
“Molécula” de NaCl
“Diagramas de Lewis”
“Molécula” de MgF2
Moléculas de H2 y O2
Moléculas de N2 y CO2
Tipos de enlace
Iónico
Metálico
Covalente
Enlace iónico
 El
compuesto iónico se forma al
reaccionar un metal con un no metal.
 Los
átomos del metal pierden electrones
(se forma un catión) y los acepta el no
metal (se forma un anión).
 Los
iones de distinta carga se atraen
eléctricamente, se ordenan y forman una
red iónica. Los compuestos iónicos no
están formados por moléculas.
Enlace iónico entre Cl y Na: formación del
ión Cl- y Na+
Redes iónicas
NaCl
CsCl
Propiedades compuestos iónicos
 Elevados
 Solubles
puntos de fusión y ebullición
en agua
 No
conducen la electricidad en estado
sólido, pero sí en estado disuelto o
fundido (Reacción química: electrolisis)
 Al
intentar deformarlos se rompe el cristal
(fragilidad)
Disolución y electrolisis del CuCl2
Disociación: CuCl2 → Cu+2 + 2 ClReacción anódica: 2 Cl- → Cl2 + 2e-
Reacción catódica: Cu+2 + 2e- → Cu
Enlace metálico

Las sustancias metálicas están formadas por átomos de un
mismo elemento metálico (baja electronegatividad).

Los átomos del elemento metálico pierden algunos
electrones, formándose un catión o “resto metálico”.

Se forma al mismo tiempo una nube o mar de electrones:
conjunto de electrones libres, deslocalizados, que no
pertenecen a ningún átomo en particular.

Los cationes se repelen entre sí, pero son atraídos por el
mar de electrones que hay entre ellos. Se forma así una
red metálica: las sustancias metálicas tampoco están
formadas por moléculas.
Fe
El modelo del mar de electrones representa al
metal como un conjunto de cationes ocupando
las posiciones fijas de la red, y los electrones
libres moviéndose con facilidad, sin estar
confinados a ningún catión específico
Propiedades sustancias metálicas
 Elevados
puntos de fusión y ebullición
 Insolubles
en agua
 Conducen
la electricidad incluso en
estado sólido (sólo se calientan: cambio
físico). La conductividad es mayor a bajas
temperaturas.
 Pueden
deformarse sin romperse
Enlace covalente
Los compuestos covalentes se
originan por la compartición de
electrones entre átomos no
metálicos.
Electrones muy localizados.
Diferentes tipos de enlace
covalente
 Enlace


covalente normal:
Simple
Múltiple: doble o triple
 Polaridad


del enlace:
Apolar
Polar
 Enlace
covalente dativo o coordinado
Enlace covalente normal

Si se comparten un par de e-: enlace covalente simple

Si se comparten dos pares de e- : enlace covalente doble

Si se comparten tres pares de e-: enlace covalente triple
Polaridad del enlace covalente

Enlace covalente apolar: entre átomos de
idéntica electronegatividad (H2, Cl2, N2…). Los
electrones compartidos pertenencen por igual a
los dos átomos.

Enlace covalente polar: entre átomos de distinta
electronegatividad (HCl, CO…). Los electrones
compartidos están más desplazados hacia el
átomo más electronegativo. Aparecen zonas de
mayor densidad de carga positiva (δ+) y zonas
de mayor densidad de carga negativa (δ-)
Enlace covalente dativo o coordinado
 Cuando
el par de electrones compartidos
pertenece sólo a uno de los átomos se
presenta un enlace covalente
coordinado o dativo.
El átomo que aporta el par de electrones
se llama donador (siempre el menos
electronegativo) y el que los recibe
receptor o aceptor (siempre el más
electronegativo)
Enlace de átomos de azufre (S) y oxígeno (O)
:S ═ O:
˙˙ ˙˙
Molécula de SO: enlace covalente doble
Molécula de SO2: enlace covalente
doble y un enlace covalente
coordinado o dativo
˙ ˙ ← S ═ O:
:O
˙˙ ˙˙ ˙˙
Molécula de SO3: enlace covalente doble
y dos enlaces covalentes coordinado o
dativo
˙ ˙ ← S ═ O:
:O
↓ ˙˙
˙˙
:O:
˙˙
¿Existen moléculas, o se trata
de estructuras gigantes?
 Redes
covalentes
 Moléculas
covalentes (pequeñas macromoléculas)
Redes covalentes
Diamante: tetraedros
de átomos de carbono
Grafito: láminas de
átomos de carbono
La unión entre átomos que comparten
electrones es muy difícil de romper. Los
electrones compartidos están muy localizados.
Moléculas covalentes

Si el enlace es apolar: moléculas apolares (H2,
O2, F2…)

Si el enlace es polar:


Moléculas polares (HCl, H2O...) (dipolos
permanentes)
Moléculas apolares (CO2) (simetría espacial)
Moléculas covalentes polares:
el centro geométrico de δ- no coincide con
el centro geométrico de δ+
Moléculas covalentes apolares:
el centro geométrico de δ- coincide con el
centro geométrico de δ+
En el CO2 existen enlaces covalentes polares y, sin
embargo, la molécula covalente no es polar. Esto
es debido a que la molécula presenta una
estructura lineal y se anulan los efectos de los
dipolos de los enlaces C-O.
δ- δ+ δO─C─O
Propiedades compuestos
covalentes (moleculares)
 No
conducen la electricidad
 Solubles:
moléculas apolares – apolares
 Insolubles:
 Bajos
moléculas polares - polares
puntos de fusión y ebullición…
 ¿Fuerzas
intermoleculares?
Fuerza intermoleculares o
fuerzas de Van der Waals
 Fuerzas
entre dipolos permanentes
 Fuerzas
de enlace de hidrógeno
 Fuerzas
entre dipolos transitorios
(Fuerzas de London)
Fuerzas entre moléculas polares
(dipolos permanentes)
HCl, HBr, HI…
+
-
+
-
Enlace de hidrógeno :Cuando el átomo
de hidrógeno está unido a átomos muy
electronegativos (F, O, N), queda prácticamente
convertido en un protón. Al ser muy pequeño, ese
átomo de hidrógeno “desnudo” atrae fuertemente
(corta distancia) a la zona de carga negativa de
otras moléculas
HF
H2O
NH3
Enlace de hidrógeno en la molécula de
agua
Enlace de hidrógeno
Este tipo de enlace es el responsable de
la existencia del agua en estado líquido y
sólido.
Estructura del hielo y del agua líquida
Non-covalent Bonds
Enlaces de hidrógeno en el ADN
Much weaker than covalent bonds
Esqueleto
desoxiribosa
fosfato
Enlaces de
- these bonds break and reform at
Room Temperature (RT)
Bases
nitrogenada
s
A: adenina
‘Transient Bonds’
G: guanina
Apilamiento de las
bases.
hidrógeno
C: citosina
T: timina
Interior
hidrófobo
Repul
electrostá
Exteri
hidróf
o
- however, cumulatively they are very
effective e.g.  helix for proteins and
double helix for DNA
Enlaces de
hidrógeno
Fuerzas entre dipolos transitorios (Fuerzas
de London)
Los dipolos inducidos se deben a las fluctuaciones
de los electrones de una zona a otra de la
molécula, siendo más fáciles de formar cuanto
más grande sea la molécula: las fuerzas de
London aumentan con la masa molecular.