Download Cuadernillo Probabilidad y Estadistica_2011

Document related concepts
no text concepts found
Transcript
PROBABILIDAD Y ESTADÍSTICA
M.C. JUAN FELIPE PÉREZ VÁZQUEZ
JUNIO 2011
ii
Contents
Introducción
vii
Plan de trabajo
I
ix
PROBABILIDAD Y ESTADÍSTICA
1
1 ESTADÍSTICA DESCRIPTIVA
1.1 Distribución de frecuencias . . . . . . . . . . . . .
1.2 Medidas de tendencia central para datos No agrupados
1.3 Medidas de tendencia central para datos agrupados . .
1.4 Medidas de dispersión para datos No agrupados . . .
1.5 Medidas de dispersión para datos agrupados . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
4
8
10
12
13
2 PROBABILIDAD
2.1 Espacio muestral y eventos . .
2.2 Conteo de puntos de la muestra
2.3 Probabilidad de un evento . . .
2.4 Reglas aditivas . . . . . . . . .
2.5 Probabilidad condicional . . . .
2.6 Reglas multiplicativas . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
15
15
16
18
19
21
22
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3 Bibliografía
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
25
iii
iv
CONTENTS
Presentación
Este documento pretende ayudarte en el curso, es decir, es una herramienta adicional para explicar temas de esta
asignatura, además presenta ejercicios y actividades adicionales que están diseñadas para que puedas realizarlas a
la par del curso y explica temas especí…cos de Probabilidad y Estadística para que la puedas comprender con éxito.
Este curso te proporcionará herramientas que te ayudarán alcanzar el nivel necesario para ingresar la Universidad
del Caribe para que tengas éxito en tus estudios universitarios.
v
vi
PRESENTACIÓN
Introducción
La Estadística es una ciencia y está considerada como una rama de las Matemáticas y podría de…nirse como la
recopilación y la interpretación de datos obtenidos en un estudio y además, es una ciencia transversal a otras
disciplinas desde la física hasta ciencias sociales y se utiliza para tomar decisiones. Esta disciplina se clasi…ca
básicamente en dos partes: en Estadística descriptiva y Estadística Analítica ó Inferencial.
Para el curso estudiaremos la Estadística desde sus conceptos básicos, estudiaremos la Estadística descriptiva,
entraremos a una rama de la Estadística que esta estrechamente vinculada, la cual es el estudio de la Probabilidad.
vii
viii
INTRODUCCIÓN
Plan de trabajo
Plan de trabajo para ingenierías
TEMA
1) Estadística Descriptiva
1.1 Distribución de Frecuencias
1.2 Medidas de tendencia central para datos No agrupados
1.3 Medidas de tendencia central para datos agrupados
1.4 Medidas de dispersión para datos No agrupados
1.5 Medidas de dispersión para datos agrupados
2) Probabilidad
2.1 Espacio muestral y eventos
2.2 Conteo de puntos de la muestra
2.3 Probabilidad de un evento
2.4 Reglas aditivas
2.5 Probabilidad condicional
2.6 Reglas multiplicativas
HORAS TOTALES
HRS
8
1
2
2
1
2
8
1
1
1
1
2
2
16
Plan de trabajo para NO ingenierías
TEMA
1) Estadística Descriptiva
1.1 Distribución de Frecuencias
1.2 Medidas de tendencia central para datos No agrupados
1.3 Medidas de tendencia central para datos agrupados
1.4 Medidas de dispersión para datos No agrupados
1.5 Medidas de dispersión para datos agrupados
2) Probabilidad
2.1 Espacio muestral y eventos
2.2 Conteo de puntos de la muestra
2.3 Probabilidad de un evento
2.4 Reglas aditivas
2.5 Probabilidad condicional
2.6 Reglas multiplicativas
HORAS TOTALES
HRS
12
2
3
3
2
2
12
1
1
2
2
3
3
24
ix
x
PLAN DE TRABAJO
Part I
PROBABILIDAD Y ESTADÍSTICA
1
Chapter 1
ESTADÍSTICA DESCRIPTIVA
La estadística descriptiva se dedica a analizar y representar los datos. Este análisis es muy básico. Aunque hay
tendencia a generalizar a toda la población, las primeras conclusiones obtenidas tras un análisis descriptivo, es
un estudio calculando una serie de medidas de tendencia central, para ver en qué medida los datos se agrupan o
dispersan en torno a un valor central.
¿Alguna vez se ha preguntado lo que hacen otras personas cuando están en la Internet? El Stanford Institute
for the Quantitative Study of Society apoyó un estudio para analizar cómo es que las personas utilizan la Internet.
A 400 encuestados se les pidió seleccionaran cuál de las 17 actividades comunes realizaron en Internet. La siguiente
grá…ca resume la información.
¿Puede imaginar toda esta información en oraciones? Las grá…cas verdaderamente valen más que mil palabras.
A continuación se dará un procedimiento para construir este tipo de grá…cas.
3
4
CHAPTER 1. ESTADÍSTICA DESCRIPTIVA
1.1
Distribución de frecuencias
Distribución de frecuencias es como se denomina en estadística a la agrupación de datos en categorías mutuamente
excluyentes que indican el número de observaciones en cada categoría. Esto signi…ca una de las cosas más importantes de la matemática, su estadística con la agrupación de datos. La distribución de frecuencias presenta las
observaciones clasi…cadas de modo que se pueda ver el número existente en cada clase.
Histograma
Un histograma es una representación grá…ca de una variable en forma de barras, donde la super…cie de cada
barra es proporcional a la frecuencia de los valores representados. En el eje vertical se representan las frecuencias,
y en el eje horizontal los valores de las variables, normalmente señalando las marcas de clase, es decir, la mitad del
intervalo en el que están agrupados los datos.
En otras palabras un histograma es la representación gra…ca de la distribución de frecuencias.
Los histogramas también permiten la comparación de los resultados de un proceso.
Problem 1 La tabla 1.1 proporciona la vida (en años) de las baterías para automóvil de una muestra aleatoria de
cierta marca.
Tabla
1.6
1.9
2.2
2.5
2.6
1.1 Vida de las baterías de automóvil
2.6 3.1 3.2 3.4 3.7 3.9 4.3
2.9 3.1 3.3 3.4 3.7 3.9 4.4
3.0 3.1 3.3 3.5 3.7 4.1 4.5
3.0 3.2 3.3 3.5 3.8 4.1 4.7
3.1 3.2 3.4 3.6 3.8 4.2 4.7
Construya un Histograma para mostrar los datos.
Para construir un Histograma antes se recomienda realizar un diagrama de tallo y hojas. Para el diagrama
de tallo y hojas primero se divide cada dato en dos partes uno que se le denomina tallo y otro que será llamado
hoja. Por ejemplo para el primer dato 1.6 el digito 1 se le denomina tallo y el digito 6 se le denomina hoja. Por
lo tanto para estos datos tendriamos cuatro tallos diferentes que serían: 1, 2, 3 y 4. Estos tallos se listan de forma
consecutiva en el lado izquierdo de una linea vertical y en lado derecho se listan las hojas correspondientes a cada
tallo, de tal forma que quedaría como se muestra en la …gura 1.1.
Figure 1.1: Diagrama de tallo y hojas para el ejercicio.
Cada tallo en realidad se convertira en una barra del histograma, es decir con este arreglo del diagrama de tallo
y hojas se tendrán 4 barras en el histograma, para algunas personas no puede ser de gran utildad visualizar un
histograma con solo 4 barras y pueden determinar un arreglo diferente, por ejemplo pueden decidir tomar multiplos
de 0.5 y el diagrama de tallo y hojas quedaría como se muestra en la …gura 1.2.
Para este diagrama de tallo y hojas cada digito del tallo se escribe dos veces y se diferencian con algún símbolo,
por ejemplo con un “*”, para el digito del tallo dos se escriben 2 tallos los cuales son: 2 y 2*. El tallo 2 podrá tener
las hojas 0, 1, 2, 3 y 4; el tallo 2* podrá tener las hojas 5, 6, 7, 8 y 9. Es decir que todos los tallos pueden tener el
mismo número de hojas. Esta condición se debe cumplir siempre.
Para este ejercicio hemos construido 2 diagramas de tallo y hojas, ambos son válidos ó correctos. La elección de
alguno de estos dos depende del interés de la persona que desea mostrar los datos, para algunas personas puede ser
1.1. DISTRIBUCIÓN DE FRECUENCIAS
5
Figure 1.2: Diagrama opcional de tallo y hojas para el ejercicio.
más interesante viasualizar los datos por años de duración de las baterias y para algunas otras puede ser de mayor
interés mostrar los datos por semestre (medio año ó 0.5 años) de duración.
Déspues de construido el digrama de tallo y hojas se debe elaborar una distribución de frecuencias. Para
construir el Histograma a partir de la distribución de frecuencias sólo se necesitan 4 datos básicos los cuales son:
Intervalo de clase, Clase, Marca de clase y Frecuencia.
A partir del diagrama de tallo y hojas se determina el intervalo de clase, se realiza a partir de los dígitos de cada
tallo (tomaremos el primer diagrama de tallo y hojas), por ejemplo tenemos los tallos 1, 2, 3 y 4; y para el tallo 1
nos preguntamos ¿què valores puede tener el tallo 1? La respuesta sería: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Es decir del
0 al 9 y si déspues unimos el digito del tallo y el de la hoja quedaría 1.0 a 1.9. De esta forma obtenemos nuestro
primer intervalo de clase. Si repetimos el procedimiento con los demas tallos tendremos la tabla 1.2:
Tabla 1.2 Intervalo de clase para la vida de las baterías de automóvil
Intervalo de clase Clase Marca de clase Frecuencia
1.0 a 1.9
2.0 a 2.9
3.0 a 3.9
4.0 a 4.9
Todos los intervalos de clase deben de ser del mismo ancho, por ejemplo el primer intervalo es de 1.0 a 1.9 si
realizamos una resta del valor máximo menos el valor mínimo obtendremos que el ancho del intervalo sería de 0.9
años, este ancho es el mismo para los demás intervalos de clase. Esta propiedad se debe conservar para la Clase.
Una propiedad de los histogramas es que las barras que lo forman no deben tener espacios entre ellas, ya que si
existen espacios entre las barras NO sería un histograma y sería una simple gra…ca de barras.
Podemos observar que los intervalos de clase no incluyen todos los numeros posibles del espacio de datos, en el
ejercicio el primer intervalo es de 1.0 a 1.9 y el segundo es de 2.0 a 2.9, es decir se salta de 1.9 a 2.0 si utilizamos
este intervalo de clase y en un futuro obtenemos un dato de 1.95 años nos enfrentariamos al problema de donde
colocarlo ¿en el primer intervalo o en el segundo? Por lo tanto la Clase debe de cubrir estos “saltos”. Para la clase
se toma el valor maximo del primer intervalo y el valor minimo del siguiente intervalo y se suman para déspues
dividirse entre 2 y el valor que resulte sera el valor maximo de la primera clase y el valor minimo de la segunda
clase, por ejemplo 1.9 y 2.0 si los sumamos nos da 3.9 y si déspues esto lo dividimos entre 2 el resultado es 1.95, este
valor es el valor maximo de la primera clase y el valor minimo de la segunda clase. Si repetimos este procedimiento
con todas las clases obtendremos:
Tabla 1.3 Clase incompleta para la vida de las baterías de automóvil
Intervalo de clase
Clase
Marca de clase Frecuencia
1.0 a 1.9
a 1.95
2.0 a 2.9
1.95 a 2.95
3.0 a 3.9
2.95 a 3.95
4.0 a 4.9
3.95 a
Para obtener el valor minimo de la primera clase calculamos el ancho de clase y para esto utilizamos la segunda
clase, por ejemplo en el ejercicio la segunda clase es 1.95 a 2.95 por lo tanto el ancho de clase es de 1, como todas
las clases deben tener el mismo ancho le restamos a 1.95 el valor de 1 y asi obtenemos el valor minimo de la primera
clase que sería de 0.95. Lo mismo hacemos para el valor maximo de la ultima clase pero en lugar de restarle el
ancho de clase se lo sumamos al valor minimo, por ejemplo 3:95 + 1 = 4:95, y asi obtenemos:
6
CHAPTER 1. ESTADÍSTICA DESCRIPTIVA
Tabla 1.4 Clase completa para la vida de las baterías de automóvil
Intervalo de clase
Clase
Marca de clase Frecuencia
1.0 a 1.9
0.95 a 1.95
2.0 a 2.9
1.95 a 2.95
3.0 a 3.9
2.95 a 3.95
4.0 a 4.9
3.95 a 4.95
Para obtener la marca de clase simplemente sumamos los dos valores de cada clase y los dividimos entre 2. Por
ejemplo para la primera clase su marca de clase sería 0:95 + 1:95 = 2:9 y si luego lo dividos entre 2 obtenemos 1.45.
Si repetimos esto para cada clase obtendremos:
Tabla 1.5 Marca de
Intervalo de clase
1.0 a 1.9
2.0 a 2.9
3.0 a 3.9
4.0 a 4.9
clase para la vida de las baterías de automóvil
Clase
Marca de clase Frecuencia
0.95 a 1.95
1.45
1.95 a 2.95
2.45
2.95 a 3.95
3.45
3.95 a 4.95
4.45
Para obtener el valor de la frecuencia simplemente contamos los digitos (hojas) que hay en cada tallo en el
diagrama de tallo y hojas. Por ejemplo en el ejercicio en el tallo 1 estan las hojas (digitos) 6 y 9, es decir son 2
hojas ó digitos y esta es la frecuencia. Si hacemos lo mismo para todos los tallos obtenemos:
Tabla 1.6 Frecuencia
Intervalo de clase
1.0 a 1.9
2.0 a 2.9
3.0 a 3.9
4.0 a 4.9
para la vida de las baterías de automóvil
Clase
Marca de clase (X) Frecuencia (f)
0.95 a 1.95
1.45
2
1.95 a 2.95
2.45
5
2.95 a 3.95
3.45
25
3.95 a 4.95
4.45
8
Ya terminada la distribución de frecuencias podemos construir el Histograma, en el eje de las X vamos a colocar
los valores de las clases y en el eje de las Y colocaremos los valores de las frecuencias. El Histograma quedaría como
se muestra en la …gura 1.3:
Figure 1.3: Muestra el Histograma de frecuencias del ejemplo 1.
Caso de estudio “Descifrado de claves secretas”
El análisis criptográ…co, que es el estudio cienti…co que se ocupa de convertir a texto simples mensajes cifrados
o codi…cados cuya clave no se conoce, proporciona una ilustración asombrosa de la forma en que las distribuciones
1.1. DISTRIBUCIÓN DE FRECUENCIAS
7
de frecuencias arrojan luz sobre una cantidad enorme de datos sin elaborar. Considere el mensaje secreto (está
escrito en ingles) de la tabla 1.7.
Tabla 1.7 Un mensaje codi…cado
IMEUX
MJDAM
MAMQK
CGNEM
KVSXD
LNEMO
MTKPO
OMRKP
VNOSP
MPDJD
WNEMR
ANEMO
VNNES
SXNES
DPRPM
MVSCX
MSPMX
KDNUB
MNEMO
MDVON
VLNEM
UVOMV
MNPKN
NSXXW
NNEMG
SNUPI
MPDLE
DBMXD
ESTTD
MPDLE
DNKNM
DPZKO
NUBNE
EONUC
MVSPM
SPMMV
DNERM
NONES
CMPNG
VMOON
NOLUJ
ASWUV
NTUIM
MLUJM
MOMXB
RPMSN
AUIMA
PNSDV
NSWUV
SVANE
ESNNU
MPVWN
LWMVA
POBPU
PVMA
Para descifrar el mensaje, se utiliza la distribución de frecuencias relativa con la de las letras de un texto normal en
inglés, mostrado en la tabla 1.8. Aun cuando es di…cil esperar un apareamiento letra por letra, la yuxtaposición puede
ser muy útil para romper el código. Después de varios intentos algunas letras pueden identi…carse, (por ejemplo,
M como e y N como t), luego porciones de palabras y, …nalmente, todo el mensaje. (Nota: un buen descifrador de
claves observa no sólo las frecuencias generales de las letras, sino que tambien considera las asociaciones preferidas
de una letra con otras, el orden de frecuencia de las dobles más comunes, de letras iniciales, de letras …nales, de
las palabras más frecuentes compuestas sólo de una letra y mucho más). La clave para este mensaje es sencilla, a
continuación se describe en la tabla 1.9, el primer renglón que sigue muestra el texto simple y el segundo, el texto
en clave.
Tabla 1.8 Distribución de frecuencia de 200 letras de un texto normal en ingles.
Frecuencia Frecuencia
Frecuencia Frecuencia
Letra
absoluta
relativa (%)
Letra
absoluta
a
16
8
n
14
7
b
3
1.5
o
16
8
c
6
3
p
4
2
d
8
4
q
1
0.5
e
26
13
r
13
6.5
f
4
2
s
12
6
g
3
1.5
t
18
9
h
12
6
u
3
3
i
13
6.5
v
2
1
j
1
0.5
w
3
1.5
k
1
0.5
x
1
0.5
l
7
3.5
y
4
2
m
6
3
z
0
0
Totales
200
100%
Tabla 1.9 La clave codi…cada
a b c d
e
f g
S C R A M B L
h
E
i
D
j
Z
k
Y
l
X
m
W
n
V
o
U
p
T
q
Q
r
P
s
O
t
N
u
K
v
J
w
I
x
H
y
G
Ejercicios 1.1
Problem 2 Los resultados siguientes representan las cali…caciones de la población del curso de probabilidad y
Estadistica 2009:
z
F
8
CHAPTER 1. ESTADÍSTICA DESCRIPTIVA
9.9 8.9 7.9 6.7 6.2
9.7 8.7 7.9 6.7 6.1
9.0 8.5 7.9 6.6 5.5
9.0 8.2 7.0 6.6 5.3
a) Construya un diagrama de tallo y hojas para las cali…caciones del curso donde los tallos sean 5, 6, 7, 8, 9.
b) Construya la distribución de frecuencias de las cali…caciones.
c) Construya el histograma de acuerdo a la distribución de frecuencias del inciso b.
Problem 3 Se toma una muestra aleatoria de la prueba ENLACE 2009 que se realizó a estudiantes de tercero de
primaria en las escuelas de Benito Juárez, Qroo. en el tema de Matematicas. Dicha muestra declara los puntos
obtenidos promedio en Matematicas de diferentes escuelas tanto publicas como privadas:
692.5 598.0 583.7 540.9 515.9
636.7 594.9 568.5 533.6 512.5
616.1 591.8 549.8 529.8 450.6
613.9 587.7 545.0 527.2 409.7
a) Construya un diagrama de tallo y hojas para los puntos promedio donde los tallos sean 4, 4*, 5, 5*, 6, 6*.
(utilice multiplos de 50 para los tallos)
b) Construya la distribución de frecuencias de los puntos promedio.
c) Construya el histograma de acuerdo a la distribución de frecuencias del inciso b.
Problem 4 El contenido de nicotina, en miligramos, de 25 cigarros de cierta marca se registraron como sigue:
1.09 1.92 1.70 1.85 1.82
1.58 2.03 1.69 1.64 2.09
2.11 0.72 1.40 1.75 1.69
1.64 1.93 1.79 2.28 1.74
1.37 2.31 2.17 2.55 1.47
a) Construya un diagrama de tallo y hojas para los datos en que los tallos son los digitos a la izquierda del
punto decimal, cada uno repetido 4 veces de modo que las hojas de doble digito 00 a 24 se asocien con los tallos
codi…cados con la letra a, las hojas de 25 a 49 se asocien con los talloss codi…cados con la letra b, etcétera. De esta
forma, un número como el 1.58 tiene un valor de tallo 1c y una hoja igual a 58.
b) Construya la distribución de frecuencias de los miligramos de nicotina.
c) Construya el histograma de acuerdo a la distribución de frecuencias del inciso b.
1.2
Medidas de tendencia central para datos No agrupados
La media, moda y mediana son medidas de tendencia central, que al calcularlas nos dan una idea de cual es el
centro de la distribución de los datos. Cuando los datos no estan agrupados ó en grupos utilizaremos las siguientes
formulas.
Las medidas de tendencia central son valores numéricos que localizan, en algún sentido, el centro de un conjunto
de datos.
Media
Es el promedio con el que probablemente el lector esté más familiarizado. Para determinar la media de los datos
NO agrupados utilizamos la siguientes formulas:
Para una población:
=
donde N es el numero de datos de la población.
X1 +X2 +X3 +XN
N
(1.1)
1.2. MEDIDAS DE TENDENCIA CENTRAL PARA DATOS NO AGRUPADOS
9
Para una muestra:
X=
X1 + X2 + X3 + Xn
n
(1.2)
donde n es el numero de datos de la muestra.
Problem 5 Determine la media de los datos NO agrupados del problema 1.
Como los datos del ejercicio son de una muestra utilizamos la formula (1.2), el resultado es el siguiente:
X=
1:6 + 1:9 + 2:2 + :::: + 4:7
136:5
=
= 3:4125
40
40
Moda
Para determinar la moda de los datos NO agrupados es encontrar el valor que con mas frecuencia se presenta
del conjunto de datos.
Problem 6 Determine la moda de los datos NO agrupados del problema 1.
mo = 3:1
Mediana
Es el valor de los datos que ocupa la posición media cuando los datos están clasi…cados en orden de acuerdo a
su tamaño. Para determinar la mediana de los datos NO agrupados, primero deben ordenarse los datos de menor
a mayor, y déspues pueden usarse las siguientes formulas:
Para una población:
M = X N +1
(1.3)
m = X n+1
(1.4)
2
Para una muestra:
2
Problem 7 Determine la mediana de los datos NO agrupados del problema 1.
Como los datos del ejercicio son de una muestra utilizamos la formula (1.4), el resultado es el siguiente:
m = X 40+1 = X20:5
2
Como el resultado es el dato 20.5 en un arreglo ordenado tomamos el dato 20 y el 21, déspues calculamos el
promedio y esa será nuestra mediana.
X20
X21
=
=
3:4
3:4
por lo tanto m = 3:4
Ejercicios 1.2
Problem 8 Determine la media de los datos NO agrupados del problema 2.
Problem 9 Determine la moda de los datos NO agrupados del problema 2.
Problem 10 Determine la mediana de los datos NO agrupados del problema 2.
Problem 11 Determine la media de los datos NO agrupados del problema 3.
10
CHAPTER 1. ESTADÍSTICA DESCRIPTIVA
Problem 12 Determine la moda de los datos NO agrupados del problema 3.
Problem 13 Determine la mediana de los datos NO agrupados del problema 3.
Problem 14 Determine la media de los datos NO agrupados del problema 4.
Problem 15 Determine la moda de los datos NO agrupados del problema 4.
Problem 16 Determine la mediana de los datos NO agrupados del problema 4.
1.3
Medidas de tendencia central para datos agrupados
La media, moda y mediana son medidas de tendencia central, que al calcularlas nos dan una idea de cual es el
centro de la distribución de los datos. Cuando los datos estan agrupados ó en grupos utilizaremos las siguientes
formulas.
Media
Es el promedio con el que probablemente el lector esté más familiarizado. Para determinar la media de los datos
agrupados utilizamos las siguiente formulas:
Para una población:
P
fX
(1.5)
=
N
Para una muestra:
X=
donde, f es la frecuencia y X es la marca de clase.
P
fX
n
(1.6)
Problem 17 Determine la media de los datos agrupados del problema 1.
Los datos agrupados del problema 1 estan resumidos en la tabla 1.6.
Como los datos del ejercicio son de una muestra utilizamos la formula (1.6), el resultado es el siguiente:
X=
137
2(1:45) + 5(2:45) + 25(3:45) + 8(4:45)
=
= 3:425
40
40
Moda
Para determinar la moda de los datos agrupados utilizamos las siguientes formulas:
Para una población:
Mo = L +
d1
w
d1 + d2
(1.7)
mo = L +
d1
w
d1 + d2
(1.8)
Para una muestra:
donde, L es el límite inferior de la clase modal, d1 y d2 , respectivamente, son las diferencias absolutas entre la
densidad de frecuencia de clase modal y de la clase precedente o siguiente, w es el ancho de clase.
Problem 18 Determine la moda de los datos agrupados del problema 1.
1.3. MEDIDAS DE TENDENCIA CENTRAL PARA DATOS AGRUPADOS
11
La clase modal es la clase donde se encuentra la moda de los datos NO agrupados, la moda de los datos NO
agrupados es 3.1 como ya lo calculamos antes. El valor de 3.1 lo incluye la tercera clase de la tabla 1.6, por lo tanto
esa es nuestra clase modal.
Como los datos del ejercicio son de una muestra utilizamos la formula (1.8), el resultado es el siguiente:
mo = 2:95 +
j25 5j
j25 5j + j25
8j
1 = 3:4905
Mediana
Es el valor de los datos que ocupa la posición media cuando los datos están clasi…cados en orden de acuerdo a
su tamaño. Para determinar la mediana de los datos agrupados utilizamos las siguientes formulas:
Para una población:
M =L+
(N=2)
f
F
m=L+
(n=2)
f
F
w
(1.9)
w
(1.10)
Para una muestra:
donde, L es el limite inferior de la clase mediana, f la frecuencia de la clase mediana, w el ancho de clase, F es
la suma de frecuencias hasta (pero sin incluir) la clase mediana.
Problem 19 Determine la mediana de los datos agrupados del problema 1.
La clase mediana es la clase donde se encuentra la mediana de los datos NO agrupados, como ya lo calculamos
antes la mediana de los datos NO agrupados es 3.4. El valor de 3.4 lo incluye la tercera clase de la tabla 1.6, por
lo tanto esa es nuestra clase mediana.
Como los datos del ejercicio son de una muestra utilizamos la formula (1.10), el resultado es el siguiente:
m = 2:95 +
(40=2)
25
7
1 = 3:47
Ejercicios 1.3
Problem 20 Determine la media de los datos agrupados del problema 2.
Problem 21 Determine la moda de los datos agrupados del problema 2.
Problem 22 Determine la mediana de los datos agrupados del problema 2.
Problem 23 Determine la media de los datos agrupados del problema 3.
Problem 24 Determine la moda de los datos agrupados del problema 3.
Problem 25 Determine la mediana de los datos agrupados del problema 3.
Problem 26 Determine la media de los datos agrupados del problema 4.
Problem 27 Determine la moda de los datos agrupados del problema 4.
Problem 28 Determine la mediana de los datos agrupados del problema 4.
12
CHAPTER 1. ESTADÍSTICA DESCRIPTIVA
1.4
Medidas de dispersión para datos No agrupados
También llamadas medidas de variabilidad, muestran la variabilidad de una distribución, indicando por medio de
un número, si las diferentes puntuaciones de una variable están muy alejadas de la media. Cuanto mayor sea ese
valor, mayor será la variabilidad, cuanto menor sea, más homogénea será a la media. Así se sabe si todos los casos
son parecidos o varían mucho entre ellos. Las medidas de dispersión más utilizadas son la desviación y estandar y
la varianza, estas medidas son las que se estudiaran solo en este documeto.
Desviación estandar
La desviación estandar y la varianza son medidas de dispersión y nos dan una idea de que tan dispersos estan
los datos.
Para determinar la desviación estandar de los datos NO agrupados utilizamos las siguientes formulas:
Para una población:
s
P
2
(X
)
(1.11)
=
N
Para una muestra:
s
P
2
X X
(1.12)
s=
n 1
Problem 29 Determine la desviación estándar de los datos NO agrupados del problema 1.
Como los datos del ejercicio son de una muestra utilizamos la formula (1.12), el resultado es el siguiente:
r
19:26375
= 0:7028
s=
39
Varianza
Para determinar la varianza de los datos NO agrupados utilizamos las siguientes formulas:
Para una población:
2
=
Para una muestra:
P
P
(X
N
2
)
(1.13)
2
X X
n 1
Problem 30 Determine la varianza de los datos NO agrupados del problema 1.
s2 =
(1.14)
Como los datos del ejercicio son de una muestra utilizamos la formula (1.14), el resultado es el siguiente:
s2 =
19:26375
= 0:4939
40 1
Caso Practico “El 85avo percentil de límite de velocidad”
Para el iniciado, la “regla del 85avo percentil” parece extraña, poco ortodoxa, y hasta puede ser temible, pero
este punto de referencia de límite de velocidad ha guiado a ingenieros de trá…co durante décadas. La idea es que
los límites de velocidad máxima deben establecerse de manera que 85% de los vehículos en un tramo particular de
carretera estén en ese límite o abajo del mismo. Según políticas en California, los ingenieros de trá…co rutinariamente
miden la rapidez con que circulan los automovilistas y luego establecen el límite en el 85avo percentil de la velocidad
de trá…co.
Ejercicios 1.4
Problem 31 Determine la desviación estandar de los datos NO agrupados del problema 2.
Problem 32 Determine la varianza de los datos NO agrupados del problema 3.
Problem 33 Determine la desviación estandar de los datos NO agrupados del problema 4.
1.5. MEDIDAS DE DISPERSIÓN PARA DATOS AGRUPADOS
1.5
13
Medidas de dispersión para datos agrupados
La desviación estandar y la varianza son medidas de dispersión y nos dan una idea de que tan dispersos estan los
datos. En este caso tomaremos los datos en grupos.
Desviación estandar
Para determinar la desviación estandar de los datos agrupados utilizamos las siguientes formulas:
Para una población:
rP
f X2 N 2
(1.15)
=
N
Para una muestra:
s
P
2
f X 2 nX
s=
(1.16)
n 1
para ambas formulas la media es la de los datos agrupados.
Problem 34 Determine la desviación estándar de los datos agrupados del problema 1.
Los datos agrupados del problema 1 estan resumidos en la tabla 1.6.
Como los datos del ejercicio son de una muestra utilizamos la formula (1.16), pero antes acompletamos la tabla
1.6 para incorporar f X, X 2 y f X 2 ; tal como se muestra en la tabla1.10.
Tabla 1.10 Frecuencia para la vida de las baterías de automóvil donde se incorpora f X, X 2 y f X 2 para calcular
la desviación estandar del problema 34.
Intervalo
Marca de frecuencia
de clase
Clase
clase (X)
(f )
fX
X2
f X2
1.0 a 1.9 0.95 a 1.95
1.45
2
2.9
2.1025
4.205
2.0 a 2.9 1.95 a 2.95
2.45
5
12.25 6.0025
30.0125
3.0 a 3.9 2.95 a 3.95
3.45
25
86.25 11.9025 297.5625
4.0 a 4.9 3.95 a 4.95
4.45
8
35.6 19.8025
158.42
490.2
Como los datos del ejercicio son de una muestra utilizamos la formula (1.16), el resultado es el siguiente:
r
490:2 40(3:425)2
s=
= 0:7334
40 1
Varianza
Para determinar la varianza de los datos agrupados utilizamos las siguientes formulas:
Para una población:
P
f X2 N 2
2
=
N
(1.17)
Para una muestra:
2
s =
P
f X 2 nX
n 1
2
Problem 35 Determine la varianza de los datos agrupados del problema 1.
Como los datos del ejercicio son de una muestra utilizamos la formula (1.18), el resultado es el siguiente:
s2 =
Ejercicios 1.5
490:2
40(3:425)2
= 0:5378
40 1
(1.18)
14
CHAPTER 1. ESTADÍSTICA DESCRIPTIVA
Problem 36 Determine la desviación estandar de los datos agrupados del problema 2.
Problem 37 Determine la varianza de los datos agrupados del problema 3.
Problem 38 Determine la desviación estandar de los datos agrupados del problema 4.
Chapter 2
PROBABILIDAD
La probabilidad surge cuando el hombre se interésa en los juegos de azar y lógicamente en aumentar sus ganancias
en los juegos, por este motivo algunos matemáticos proporcionaron estrategias a los jugadores, estos pioneros fueron
Pascal, Leibniz, Fermat y Bernoulli.
¿Qué queremos decir cuando hacemos a…rmaciones como “Brasil probablemente ganara la copa mundial”?, ó
“tengo 50% de posibilidad obtener un numero par al lanzar un dado”. En cada caso expresamos un resultado del
cual no estamos seguros pero debido a la experiencia o a datos pasados o a partir de la comprensión del experimento
tenemos algún grado de con…anza en la validez de cada a…rmación. La probabilidad de ocurrencia de algún evento
que resulta de un experimento estadístico se evalúa por medio de un conjunto de números reales denominados pesos
o probabilidades que van de 0 a 1. Y la suma de todas las probabilidades o pesos posibles de un experimento es 1.
Es decir si la probabilidad de un evento es cercana a 1 tenemos razón su…ciente para creer que es bastante probable
que ocurra. El caso contrario es cuando la probabilidad de un evento es muy cercana a 0.
2.1
Espacio muestral y eventos
Espacio muestral es el conjunto de todos los resultados posibles de un experimento estadistico y se representa con
el simbolo S.
Problem 39 Considere el experimento de lanzar un dado. Si nos interésa el número que muestra la cara superior
el espacio muestral sería:
S = f1; 2; 3; 4; 5; 6g
Es decir, los posibles resultados son: 1; 2; 3; 4; 5; 6.
Un evento es un subconjunto del espacio muestral.
Problem 40 Si lanzamos un dado podemos estar interésados en el evento (A) que caiga un número par, estó
ocurrirá si la cara muestra un elemento del subconjunto A.
A = f2; 4; 6g
Ejercicios 2.1
Problem 41 Determine el espacio muestral de un experimento que consiste en lanzar una moneda.
Problem 42 Determine el espacio muestral de un experimento que consiste en lanzar una moneda y déspues
lanzarla una segunda vez si sale cara, pero si sale cruz en el primer lanzamiento, entonces se lanza un dado.
15
16
CHAPTER 2. PROBABILIDAD
Problem 43 Liste los elementos de cada uno de los espacios muestrales siguientes:
a) El conjunto de enteros entre 1 y 50 divisibles entre 8.
b) El conjunto de números primos entre 1 y 50.
Problem 44 Un experimento consiste en lanzar un dado y déspues lanzar una moneda una vez si el número en
el dado es par. Si el número es impar, la moneda se lanza dos veces más. Determine el espacio muestral de este
experimento.
2.2
Conteo de puntos de la muestra
Uno de los problemas de la Estadística es evaluar el elemento de posibilidad asociado a ciertos eventos cuando se
lleva a cabo un experimento. Algunas veces se deben resolver problemas de probabilidad mediante el conteo del
número de puntos en el espacio muestral sin listar realmente cada elemento.
Regla de multiplicación.
Si una operación se puede llevar a cabo en n1 formas, y si para cada una de éstas se puede realizar una segunda
operación en n2 formas, entonces las dos operaciones se pueden ejecutar juntas n1 n2 formas.
Problem 45 ¿Cuántos almuerzos que consisten en una sopa, emparedado, postre y una bebida son posibles si
podemos seleccionar de 4 sopas, 3 tipos de emparedados, 3 postres y 5 bebidas?
n1
n2
n3
n4
=
=
=
=
tipo
tipo
tipo
tipo
de
de
de
de
sopa = 4
emparedado = 3
postre = 3
bebida = 5
(n1 ) (n2 ) (n3 ) (n4 ) = (4) (3) (3) (5) = 180 diferentes maneras de elegir un almuerzo.
Permutaciones
Algunas ocasiones nos interésa encontrar un espacio muestral que contiene como elementos a todas las posibles
ordenaciones o arreglos de un grupo de objetos. Por ejemplo, podemos querer saber cuantos arreglos diferentes son
posibles para sentar a 5 personas alrededor de una mesa los diferentes arreglos se llaman permutaciones.
El número de permutaciones de n objetos distintos tomados de r a la vez es:
n Pr
=
n!
(n
r)!
(2.1)
Problem 46 ¿Cuantos arreglos diferentes son posibles para sentar a 5 personas alrededor de una mesa?
n=# de asientos en la mesa =5
r= # de personas en la mesa = 5
5 P5
=
5!
(5
5)!
=
120
= 120
1
El número de permutaciones distintas de n cosas de las que n1 son de una clase, n2 de una segunda clase, n3 de
una tercera clase,. . . ., nk de una k-ésima clase es:
n!
n1 !n2 !n3 !:::nk !
(2.2)
2.2. CONTEO DE PUNTOS DE LA MUESTRA
17
Problem 47 ¿De cuantas formas diferentes se pueden arreglar 5 focos azules, 2 focos verdes y 4 focos amarillos
en una serie de luces navideña con 11 porta focos?
n=# de porta focos =11
n1 = # focos azules =5
n2 = # focos verdes =2
n3 = # focos amarillos =4
39916800
39916800
11!
=
=
= 6930
(5!) (2!) (4!)
(120) (2) (24)
5760
Combinaciones
En ocasiones nos interésa el número de formas de seleccionar r objetos de n sin importar el orden. Estas
selecciones se llaman combinaciones.
El número de tales combinaciones de n objetos distintos tomados de r es:
n
r
=
n!
r! (n r)!
(2.3)
Problem 48 De 4 químicos y 5 físicos encuentre el número de comités que se pueden formar que consistan de 2
químicos y 3 físicos.
El número de formas de seleccionar a 2 químicos de un total de 4 es:
n=# total de químicos disponible = 4
r= # de químicos que se necesitan para formar el comité = 2
24
4
4!
=
=6
=
2! (4 2)!
2 (2)
2
El número de formas de seleccionar a 3 físicos de un total de 5 es:
n=# total de físicos disponible = 5
r= # de físicos que se necesitan para formar el comité = 3
120
5
5!
=
=
= 10
3
3! (5 3)!
6 (2)
Al utilizar la regla de la multiplicación con n1 = 6 y n2 = 10, podemos formar
n1 =# de formas de seleccionar a 2 químicos de un total de 4 = 6
n2 =# de formas de seleccionar a 3 físicos de un total de 5 = 10
n1 n2 = (6) (10) = 60
Existen 60 formas diferentes de formar comités con 2 químicos y 3 físicos.
Ejercicios 2.2
Problem 49 Si un experimento consiste en lanzar un dado y después extraer una letra al azar del alfabeto ingles,
¿cuántos puntos hay en el espacio muestral?
Problem 50 Cierto calzado se recibe en cinco diferentes estilos con cada estilo disponible en cuatro colores distintos.
Si la tienda desea mostrar pares de estos zapatos que muestren la totalidad de los diversos estilos y colores, ¿cuántos
diferentes pares tendría que mostrar?
Problem 51 ¿De cuantos formas distintas se puede responder una prueba de falso y verdadero que consta de nueve
preguntas?
Problem 52 ¿cuántas permutaciones se pueden hacer con las letras de la palabra columna?
Problem 53 ¿Cuantas permutaciones comienzan con la letra m del total de permutaciones que se pueden hacer
con las letras de la palabra columna?
18
CHAPTER 2. PROBABILIDAD
2.3
Probabilidad de un evento
La probabilidad de la ocurrencia de un evento que resulta de un experimento estadistico se evalua por medio de
números reales denominados probabilidades que van de 0 a 1.
Probabilidad simple
La probabilidad simple se re…ere a la probabilidad de ocurrencia de un solo evento, es decir, la probabilidad
de un evento es igual al numero total de éxitos (solo éxitos) entre el numero total de posibles resultados (éxitos y
fracasos) ó espacio muestral.
Problem 54 Considere el experimento de lanzar un dado. Si nos interésa saber la probabilidad de obtener un 5.
Entonces los posibles resultados son: 1, 2, 3, 4, 5 y 6. A esto se le conoce también como espacio muestral. Y el
número total de éxitos es solo un éxito (solo existe un 5 en un dado común). Por lo tanto
P (obtener un 5) =
1
6
Algunas ocasiones es de gran ayuda construir un diagrama de árbol para comprender mejor el problema. Para
este problema el diagrama de árbol sería muy simple, a continuación se planteará otro problema para ejempli…car
el diagrama de árbol.
Problem 55 Un experimento consiste en lanzar un dado y después en lanzar una moneda una vez. ¿Qué posibles
resultados podría obtener?, ¿Cuál es la probabilidad de obtener un 3 y águila?
Se dibuja un diagrama de árbol como se muestra en la …gura 2.1.
Figure 2.1: Muestra el diagrama de árbol del problema 55.
Se observan 12 posibles resultados, la cantidad de resultados también se puede obtener de multiplicar el número
de ramas del primer evento (lanzar un dado) es decir, 6 por el número de ramas del segundo evento (lanzar una
moneda) es decir, 2. Por lo tanto (6) (2) = 12 posibles resultados. Y la probabilidad de obtener un 3 y águila es:
P (3; aguila) =
1
12
2.4. REGLAS ADITIVAS
19
Caso Practico “Tratando de vencer las posibilidades”
Numerosos jóvenes en EUA aspiran a hacerse atletas profesionales. Sólo unos pocos lo logran. Por cada 2400
jugadores universitarios de baloncesto de alto rendimiento, sólo 64 forman parte de un equipo profesional; esto se
traduce a una posibilidad de sólo 0.027 (64/2400).
Hay muchos otros datos interesantes, por ejemplo, muchos estudiantes de secundaria sueñan en convertirse en
jugadores profesionales de baloncesto, pero la probabilidad que su sueño se convierta en realidad es de sólo 0.000427
(64/150000).
Una vez que un jugador haya llegado a un equipo universitario de baloncesto, podría estar muy interesado
en las posibilidades de llegar a ser un jugador de alto rendimiento. De los 3800 jugadores que pertencen a una
equipo universitario, 2400 son jugadores de alto rendimiento. Por lo tanto, si un jugador ha llegado a un equipo
universitario, las posibilidades de que juegue como de alto rendimiento son 0.6316 (2400/3800).
El jugador universitario de alto rendimiento que está jugando está interesado en sus posibilidades de llegar al
siguiente nivel. De los 2400 jugadores universitarios de alto rendimiento, sólo 64 llegan a equipos profesionales,
mientras que 2336 no llegan. Las posibilidades están fuertemente contra él para que llegue al siguiente nivel.
Ejercicios 2.3
Problem 56 ¿Cuál es la probabilidad de sacar una carta roja en una baraja de 52 cartas?
Problem 57 ¿Cuál es la probabilidad de sacar un rey en una baraja de 52 cartas?
Problem 58 ¿Cuál es la probabilidad de sacar un 8 cuando se lanzan 2 dados al mismo tiempo?
Problem 59 ¿Cuál es la probabilidad de sacar un 8 cuando se lanzan 3 dados al mismo tiempo?
Problem 60 ¿cuál es la probabilidad de obtener un aguila y un sol cuando se lanzan 2 monedas al mismo tiempo?
2.4
Reglas aditivas
En algunas ocasiones es más fácil calcular la probabilidad de algún evento a partir del conocimiento de las probabilidades de otros eventos. Esto puede ser cierto si el evento en cuestión se puede representar como la unión de
otros dos eventos o como el complemento de algún evento. La regla aditiva, se aplica a uniones de eventos.
Si A y B son 2 eventos cualquiera, entonces
P (A [ B) = P (A) + P (B)
P (A \ B)
(2.4)
Para esto considere el diagrama de Venn de la …gura 5. Donde se ilustra esta regla aditiva de probabilidad.
Figure 2.2: Muestra el diagrama de Venn de la regla aditiva.
20
CHAPTER 2. PROBABILIDAD
Problem 61 La probabilidad de que Jose apruebe un curso de Matematicas es de 2/3, y la propabilidad de que
aprube un curso de Ingles es de 4/5. Si la probabilidad de aprobar ambos cursos es de 1/2. ¿Cuál es la probabilidad
de que Jose apruebe al menos uno de los dos cursos?
Si M es el evento de aprobar Matematicas e I es el evento de aprobar Ingles, entonces tenemos,
P (M [ I) = P (M ) + P (I)
P (M \ I) =
2 4
+
3 5
1
29
=
2
30
En algunas ocaciones los eventos A y B son excluyentes, es decir, no contienen elementos en comun, para estos
casos la P (A \ B) = 0
Problem 62 ¿Cuál es la probabilidad de obtener un total de 7 u 11 cuando se lanza un par de dados?
Si S es el evento de obtener un 7 y O es el evento de obtener un 11, entonces para obtener un 7 ocurre para seis
de los 36 puntos muestrales y obtener un total de once ocurre ocurre para 2 de los 36 puntos muestrales. Por lo
tanto,
P (S [ O) = P (S) + P (O)
P (S \ O) =
2
6
+
36 36
0=
2
9
Regla del complemento
Si un evento A y su complemento del evento A se denota A´entonces
P (A) + P (A) = 1
(2.5)
Problem 63 Si las probabilidades de que un vendedor de autos venda cero, uno, dos, tres, cuatro y cinco autos por
semana son 0:05; 0:25; 0:35; 0:20; 0:10 y 0:05 respectivamente. ¿Cuál es la probabilidad de que de venda al menos un
auto la proxima semana?
Sea el evento A de que al menos venda un auto el vendedor. Por lo tanto Aes el evento de que se venda menos
de un auto ó mejor dicho el evento de que no venda ningun auto.
P (A) = 1
P (A) = 1
0:05 = 0:95
Ejercicios 2.4
Problem 64 ¿Cuál es la probabilidad de sacar una carta roja o un ás en una baraja de 52 cartas?
Problem 65 ¿Cuál es la probabilidad de sacar un rey ó un 8 en una baraja de 52 cartas?
Problem 66 Una caja contiene 500 sobres de los cuales 75 contienen $100 en efectivo, 150 contienen $25 y 275
contienen $10.
Problem 67 Calcule la probabilidad de sacar un sobre que contenga menos de $100
Problem 68 Calcule la probabilidad de sacar un sobre que contenga $100 ó $25
Problem 69 ¿Cuál es la probabilidad de obtener un 7 ú 11 cuando se lanzan dos dados?
Problem 70 ¿Cuál es la probabilidad de obtener 6 ó menos cuando se lanzan tres dados?
2.5. PROBABILIDAD CONDICIONAL
2.5
21
Probabilidad condicional
La probabilidad que un evento B ocurra cuando se sabe que ya ocurrió un evento A se llama probabilidad condicional.
La probabilidad condicional de B, dado A, se denota de la siguiente manera:
P (B j A) =
P (A \ B)
P (A)
(2.6)
Problem 71 La probabilidad de que un vuelo programado salga a tiempo es P (D) = 0:85; la probabilidad que
llegue a tiempo es P (A) = 0:83 y la probabilidad de que salga y llegue a tiempo es P (D \ A) = 0:80. Encuentre la
probabilidad de que un avión llegue a tiempo dado que salio a tiempo.
La probabilidad de que un avión llegue a tiempo, dado que salio a tiempo es:
P (A j D) =
0:80
P (D \ A)
=
= 0:9411
P (D)
0:85
Problem 72 La información de la tabla 2.1 muestra la población de adultos de una ciudad pequeña.
Tabla 2.1 Población de adultos que estan empleados y desempleados de una ciudad pequeña.
Empleado Desempleado Total
Hombre
460
40
500
Mujer
140
260
400
Total
600
300
900
Si M es el evento de elegir una Mujer y E el evento de elegir un empleado, entonces encuentre la propabilidad
de elegir una mujer dado que tenga empleo.
P (M j E) =
P (M \ E)
140
7
=
=
P (E)
600
30
Ejercicios 2.5
Problem 73 En un experimento para estudiar la relación de la hipertensión arterial y los habitos de fumar, se
reunen los siguientes datos para 180 individuos:
Con hipertensión
Sin hipertensión
No fumadores
21
48
Fumadores moderados
36
26
Fumadores empedernidos
30
19
Si se selecciona uno de estos individuos al azar, encuentre la probabilidad de que la persona:
a) Sufra hipertensión dado dado que es fumadora empedernida
b) No sufra hipertensión dado que No fume
c) Sea un no fumador dado que la persona sufra hipertensión
d) Sea un fumador moderado dado que no sufra hipertensión
Problem 74 ¿Cuál es la probabilidad de sacar un rey ó un 8 en una baraja de 52 cartas dado que ya se saco un
ás previamente
Problem 75 Una muestra aleatoria de 200 adultos se clasi…ca abajo por sexo y su nivel de educación
22
CHAPTER 2. PROBABILIDAD
Educación
Primaria
Secundaria
Preparatoria
Hombre
38
28
22
Mujer
45
50
17
Si se selecciona una persona al azar de este grupo, encuentre la probabilidad de que la persona:
a) Sea hombre dado que tiene educación primaria
b) Sea mujer dado que tiene educación secundaria
c) Tenga educación preparatoria dado que sea mujer
d) Tenga educación secundaria dado que sea hombre
2.6
Reglas multiplicativas
Al despejar la formula de probabilidad condicional obtenemos la regla multiplicativa:
P (A \ B) = P (A) P (B j A)
(2.7)
Problem 76 En una caja que contiene 30 focos sabemos que 5 de ellos estan defectuosos. Si seleccionamos 2 focos
al azar de esta caja y los separamos déspues de haberlos sacados sin reemplazarlos, ¿cuál es la probabilidad de que
ambos focos esten defectuosos?
Si A es el evento de sacar el primer foco defectuoso y B el evento de sacar el segundo foco defectuoso, entonces
P (A \ B) =
5
30
4
29
=
2
87
Si dos eventos son independientes entonces,
P (A \ B) = P (A) P (B)
(2.8)
Problem 77 En una pequeña ciudad que tiene una ambulancia y un carro de bomberos para emergencias, la
probabilidad de que la ambulancia este disponible cuando se necesite es de 0.95 y la probabilidad de que el carro de
bomberos este disponible cuando se necesite es de 0.94. En un accidente donde se ocupen la ambulancia y el carro
de bomberos, encuentre la probabilidad de que ambos esten disponibles.
Sea A el evento de que la ambulancia este disponible y B el evento de que el carro de bomberos este disponible,
entonces
P (A \ B) = P (A) P (B) = (0:95) (0:94) = 0:893
Ejercicios 2.6
Problem 78 Un agente de bienes raices tiene ocho llaves maestras para abrir varias casas nuevas. Sólo una llave
maestra abrira cualquiera de las casas. Si 40% de estas casas por lo general se dejan abiertas, ¿cuál es la probabilidad
de que el agente pueda entrar en una casa especi…ca si selecciona tres llaves maestras al azar antes de salir de la
o…cina?
Problem 79 Considere el experimento de lanzar un dado dos veces. ¿Cuál es la probabilidad de obtener un 5 en
el primer lanzamiento y un 3 en el segundo lanzamiento?
Problem 80 Un fabricante de una vacuna para la gripe se interésa en la calidad de su suero. Tres diferentes
departamentos procesan los lotes de suero y tienen tasas de rechazo de 0.10, 0.08 y 0.12 respectivamente. Las
inspecciones de los tres departamentos son secuenciales e independientes.
2.6. REGLAS MULTIPLICATIVAS
23
a) ¿Cuál es la probabilidad de que un lote sobreviva la primera inspección y que sea rechazado en la segunda
inspección?
b) ¿Cuál es la probabilidad de que un lote pase las tres inspecciones?
Problem 81 En un juego de poker usted recibe 4 cartas de una baraja de 52 cartas. ¿Cuál es la probabilidad de
que le repartan 4 reyes?
24
CHAPTER 2. PROBABILIDAD
Chapter 3
Bibliografía
BIBLIOGRÁFIA BÁSICA
Kohler Heinz. Estadística para negocios y economía. Editorial CECSA.
Comentario:
El contenido del curso se encuentra en este libro. Este libro explica muy bien los contenidos del temario y se
recomienda para este curso ya que es introductorio a los temas de estadística y las explicaciones son muy claras y
simples.
Walpole Ronald E., Myers Raymond H. Probabilidad y estadística. Editorial McGraw Hill.
Comentario:
Este libro es un poco más avanzado que el anterior. Utilizaremos este libro para abordar temas de las unidad
II, pero antes utilizaremos el libro anterior que servirá como introducción a estos temas.
Johnson. Estadistica elemental: lo esencial. Cengage learning. ISBN 9789706868350
BIBLIOGRÁFIA COMPLEMENTARIA
Freud John E., Gary A Simon. Estadística elemental. Editorial Prentice Hall.
Meyer Paul L. Probabilidad y aplicaciones estadísticas. Editorial Addison Wesley Longman.
John Neter William Wasserman, G.A. Whit More. Fundamentos de estadística para negocios y economía.
Editorial CECSA.
Webster Allen. Estadística aplicada a los negocios y la economía. Editorial Mcgrawhill.
OTROS MEDIOS DIDÁCTICOS
La página electrónica siguiente cuenta con problemas de estadística, de…niciones y formulas:
http://mathworld.wolfram.com
25