Download Curso Completo De Fisica
Document related concepts
Transcript
Física con ordenador Unidades y Medidas Cinemática Dinámica Dinámica celeste Física con ordenador Curso Interactivo de Física en Internet Sólido rígido Oscilaciones Movimiento ondulatorio Fluidos Fenómenos de transporte Física estadística y Termodinámica Electromagnetismo Angel Franco García Mecánica Cuántica Escuela Universitaria de Ingeniería Técnica Industrial de Eibar Indice de páginas web Índice de applets La enseñanza de la Física Enlaces a webs de Física Descarga del curso Programas de Física para Windows Problemas de Física El autor El Curso Interactivo de Física en Internet, Es un curso de Física general que trata desde conceptos simples como el movimiento rectilíneo hasta otros más complejos como las bandas de energía de los sólidos. La interactividad se logra mediante los 204 applets insertados en sus páginas webs que son simulaciones de sistemas físicos, prácticas de laboratorio, experiencias de gran relevancia histórica, problemas interactivos, problemas-juego, etc. Novedades Visite un nuevo capítulo del Curso Interactivo de Física en Internet: Fluidos, con 19 applets. La ampliación notable de otro capítulo, Electromagnetismo con 35 nuevos applets. También se ha ampliado el capítulo Movimiento ondulatorio con 4 nuevos applets. Próximamente, se añadirán nuevos applets de Mecánica y Termodinámica. El Curso Interactivo de Física en Internet, se estará actualizando a lo largo de los próximas semanas. Sus opiniones y comentarios serán bienvenidos. file:///D|/Programas%20Disco%20C/Archivos%20Edonkey/Incoming/Curso%20de%20Física/default.htm (1 de 2) [25/09/2002 15:09:22] Física con ordenador Lenguaje Java Programación en Lenguaje Java. Se estudia los fundamentos del lenguaje Java, y especialmente las características que hacen de éste un lenguaje de Programación Orientado a Objetos. Se estudian los applets poniendo especial énfasis en la respuesta a las acciones del usuario sobre los controles. A continuación, se estudia los threads, hilos o procesos ligeros y se aplican a la animación. Se finaliza, con la tecnología de los componentes o JavaBeans que nos conduce directamente hacia la versión Java 2. Una sección está dedicada al estudio completo de ejemplos significativos del Curso Interactivo de Física en Internet. Procedimientos numéricos en lenguaje Java. Se aplican los fundamentos del lenguaje Java a la resolución de problemas físicomatematicos: tratamiento de datos, números complejos, matrices, raíces de una ecuación trascendente y de un polinomio, integración, ecuaciones diferenciales y métodos de Montecarlo. El objetivo es el de enseñar al lector a traducir la descripción de un problema a código, a organizar el código en funciones, a agrupar datos y funciones en clases y las clases en jerarquías. Proyecto parcialmente financiado por la CICYTen 1998. Referencia DOC96-2537 Mejor trabajo presentado en el I Congreso Nacional de Informática Educativa (Puertollano, Noviembre de 1999). El Curso Interactivo de Física en Internet ha recibido un Primer Premio en el concurso público organizado por el Ministerio de Educación y Cultura (Programa de Nuevas Tecnologías) para premiar los materiales curriculares en soporte electrónico que puedan ser utilizados y difundidos en Internet. Resolución del 2 de diciembre de 1999 de la Secretaría General de Educación y Formación Profesional del Ministerio de Educación y Cultura, publicado en el BOE el viernes 24 de diciembre de 1999. El Curso Interactivo de Física en Internet ha recibido una Mención de Honor en el Noveno Concurso Anual de Software (1998), organizado por la revista Computers in Physics, una publicación de la American Institute of Physics. by multimedia physics Trabajo seleccionado en el Museo Miramón Kutxaespacio de la Ciencia (San Sebastián) el 30 de septiembre de 2000, por el programa "Física en Acción" para participar en la Semana Europea de la Ciencia y la Tecnología 2000, que tuvo lugar en la sede del CERN (Ginebra) en noviembre del mismo año. Última actualización: 3 de Junio de 2001 file:///D|/Programas%20Disco%20C/Archivos%20Edonkey/Incoming/Curso%20de%20Física/default.htm (2 de 2) [25/09/2002 15:09:22] Unidades y Medidas Unidades y Medidas Unidades y medidas Sistema Internacional de Unidades Errores en las medidas La balanza El calibre Medida del área de una figura rectangular Bibliografía La existencia de gran número de diversas unidades, creaba dificultades en las relaciones internacionales de comercio, en el intercambio de resultados de investigaciones científicas, etc. Como consecuencia los científicos de diversos países intentaron establecer unidades comunes, válidas en todos ellos. Durante la Revolución Francesa se creó el Sistema Métrico Decimal que, según sus autores, debería servir "en todos los tiempos, para todos los pueblos, para todos los países". Su característica principal es que las distintas unidades de una misma magnitud se relacionan entre sí como exponentes enteros de diez. Desde mediados del siglo XIX, el sistema métrico comenzó a difundirse ampliamente, fue legalizado en todos los países y constituye la base de las unidades que sirven para la medición de diversas magnitudes en la Física, en otras ciencias y en la ingeniería. Algunos estudiantes recuerdan haber oído a sus padres o abuelos acerca de las unidades propias de su lugar de origen, pero no suelen conocer su definición. Mediante algunos ejemplos ilustrativos se puede poner de manifiesto la necesidad de disponer de unidades de medida que tengan un ámbito de aplicación lo más grande posible. Los estudiantes deberán conocer las propiedades que caracterizan a las unidades, cuales son las magnitudes fundamentales en el Sistema Internacional de Unidades, y cómo se obtiene la unidad de una magnitud derivada dada su definición. El objetivo básico de esta parte del capítulo es la de dar a conocer o recordar las unidades de medida y escribirlas correctamente. En el artículo primero del Real Decreto 1317/1989 de 27 de octubre del Ministerio de Obras Públicas y Urbanismo por el que se establecen las Unidades Legales de Medida, se señala que el Sistema Legal de Unidades de Medida obligatorio en España es el sistema métrico file:///D|/Programas%20Disco%20C/Archivos%20E...Curso%20de%20Física/unidades/unidadMedida.htm (1 de 4) [25/09/2002 15:09:24] Unidades y Medidas decimal de siete unidades básicas, denominado Sistema Internacional de Unidades (SI), adoptado por la Conferencia General de Pesas y Medidas y vigente en la Comunidad Económica Europea. Las medidas y errores se encuadran mejor en una práctica de laboratorio que en un conjunto de problemas propuestos en clase, ya que los estudiantes aprenden a manejar distintos aparatos de medida: calibre, micrómetro, etc. En esta parte del capítulo, hemos simulado mediante applets las medidas efectuadas con una balanza y con un calibre, para que los estudiantes dispongan de dos ejemplos significativos para el aprendizaje de la teoría de errores. Los problemas que resolverán los estudiantes son los siguientes: 1. Dada una medida y su error, escribirla correctamente. 2. Dada una lista de medidas y sus errores, determinar cual es la más precisa. 3. Dadas varias medidas, hallar el valor medio, error absoluto y el error relativo. 4. Determinar el error de una magnitud conocidas las medidas y los errores de las magnitudes de las que depende. Por ejemplo, hallar la densidad de un cuerpo cuando se conoce su masa y su volumen y el área de un rectángulo, cuando se conocen las medidas y el error de la medida de sus lados. Bibliografía Ministerio de Obras Públicas y Urbanismo. Real Decreto 1317/1989 de 27 de octubre. B.O.E. del viernes 3 de noviembre de 1989 Alonso, Finn. Física. Editorial Addison-Wesley Iberoamericana (1995). Capítulo 2. Burbano S., Burbano E., Gracia C. Física General. Editorial Mira (1993). Capítulos 1 y 2. file:///D|/Programas%20Disco%20C/Archivos%20E...Curso%20de%20Física/unidades/unidadMedida.htm (2 de 4) [25/09/2002 15:09:24] Unidades y Medidas Serway. Física. Editorial McGraw-Hill (1992) Capítulo 1. (Magnitudes y unidades) Tipler. Física. Editorial Reverté (1994). Capítulo 1. (Unidades y medidas) Dpto. de Física de la Materia Condensada. Cálculo de errores en las medidas. Universidad del País Vasco. Leioa (Vizcaya) Artículos Orte A. La medida atómica del tiempo. Revista Española de Física, V3, nº 2, 1989, pp. 28-36. De la medida del tiempo en base a la rotación y traslación de la Tierra, al patrón de tiempo actual basado en términos de un múltiplo del periodo de la radiación del cesio. Puigcerver. Sobre el uso y desuso del S. I. M. Revista Española de Física, V-5, nº 1, 1991, pp. 23-25. Comenta los errores habituales que se cometen al escribir las unidades de las magnitudes físicas, en los libros de texto, en artículos de las revistas científicas, en los enunciados de los problemas, etc. Sena L. A. Unidades de las magnitudes físicas y sus dimensiones. Editorial Mir (1979). Análisis dimensional. Unidades de las magnitudes geométricas, mecánicas, térmicas, acústicas, eléctricas, magnéticas, de la radiación, y de física atómica. Spiridónov O. Constantes Física Universales. Editorial Mir. Colección Física al alcance de todos (1986). Describe la historia de las constantes físicas, su significado y el modo en que se miden. Villena L. Sistema Internacional de Unidades (S. I.). Revista Española de Física. V-1, nº 2, 1987, pp. 52-56. Villena L. Cambio, en enero de 1990, de los valores del voltio, ohmio y la ITS. Revista Española de Física. V-4, nº 1, 1990, pp. 33-36. file:///D|/Programas%20Disco%20C/Archivos%20E...Curso%20de%20Física/unidades/unidadMedida.htm (3 de 4) [25/09/2002 15:09:24] Unidades y Medidas Zavelski F. El tiempo y su medición. Editorial Mir. Colección Física al alcance de todos (1990). Describe el procedimiento de la medición del tiempo a lo largo de la historia. Los procedimientos de medida de la edad de las rocas, planetas y estrellas. file:///D|/Programas%20Disco%20C/Archivos%20E...Curso%20de%20Física/unidades/unidadMedida.htm (4 de 4) [25/09/2002 15:09:24] Sistema Internacional de Unidades Sistema Internacional de unidades Unidades y medidas Sistema Internacional de Unidades Unidades S.I. básicas Unidades S.I. suplementarias Unidades S.I. derivadas Errores en las medidas Múltiplos y submúltiplos decimales La balanza El calibre Introducción Medida del área de una figura rectangular La observación de un fenómeno es en general incompleta a menos a menos que dé lugar a una información cuantitativa. Para obtener dicha información se requiere la medición de una propiedad física. Así, la medición constituye una buena parte de la rutina diaria del físico experimental. La medición es la técnica por medio de la cual asignamos un número a una propiedad física, como resultado de una comparación de dicha propiedad con otra similar tomada como patrón, la cual se ha adoptado como unidad. Supongamos una habitación cuyo suelo está cubierto de baldosas, tal como se ve en la figura, tomando una baldosa como unidad, y contando el número de baldosas medimos la superficie de la habitación, 30 baldosas. En la figura inferior la medida de la misma superficie da una cantidad diferente 15 baldosas. La medida de una misma magnitud física (una superficie) da lugar a dos cantidades distintas debido a que se han empleado distintas unidades de medida. Este ejemplo, nos pone de manifiesto la necesidad de establecer una única unidad de medida para una magnitud dada, de modo que la información sea comprendida por todas las personas. Este es el espíritu del Sistema Internacional de Unidades de medida, obligatorio en España y vigente en la Unión Europea. Unidades SI básicas. file:///D|/Programas%20Disco%20C/Archivos%20E...%20de%20Física/unidades/unidades/unidades.htm (1 de 8) [25/09/2002 15:09:27] Sistema Internacional de Unidades Magnitud Nombre Símbolo Longitud metro m Masa kilogramo kg Tiempo segundo s Intensidad de corriente eléctrica ampere A Temperatura termodinámica kelvin K Cantidad de sustancia mol Intensidad luminosa candela mol cd Unidad de longitud: metro (m) El metro es la longitud de trayecto recorrido en el vacío por la luz durante un tiempo de 1/299 792 458 de segundo. Unidad de masa El kilogramo (kg) es igual a la masa del prototipo internacional del kilogramo Unidad de tiempo El segundo (s) es la duración de 9 192 631 770 periodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del átomo de cesio 133. Unidad de intensidad de corriente eléctrica El ampere (A) es la intensidad de una corriente constante que manteniéndose en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y situados a una distancia de un metro uno de otro en el vacío, produciría una fuerza igual a 2.10-7 newton por metro de longitud. Unidad de temperatura termodinámica El kelvin (K), unidad de temperatura termodinámica, es la fracción 1/273,16 de la temperatura termodinámica del punto triple del agua. Observación: Además de la temperatura termodinámica (símbolo T) expresada en kelvins, se utiliza también la temperatura Celsius (símbolo t) definida por la ecuación t = T - T0 donde T0 = 273,15 K por definición. Unidad de cantidad de sustancia El mol (mol) es la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos hay en 0,012 kilogramos de carbono 12. Cuando se emplee el mol, deben especificarse las unidades elementales, que pueden ser átomos, moléculas, iones, electrones u otras partículas o grupos especificados de tales partículas. file:///D|/Programas%20Disco%20C/Archivos%20E...%20de%20Física/unidades/unidades/unidades.htm (2 de 8) [25/09/2002 15:09:27] Sistema Internacional de Unidades Unidad de intensidad luminosa La candela (cd) es la unidad luminosa, en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 540 1012 hertz y cuya intensidad energética en dicha dirección es 1/683 watt por estereorradián. Unidades SI suplementarias. Magnitud Nombre Símbolo Expresión en unidades SI básicas Ángulo plano Radián rad mm-1= 1 Ángulo sólido Estereorradián sr m2m-2= 1 Unidad de ángulo plano El radián (rad) es el ángulo plano comprendido entre dos radios de un círculo que, sobre la circunferencia de dicho círculo, interceptan un arco de longitud igual a la del radio. Unidad de ángulo sólido El estereorradián (sr) es el ángulo sólido que, teniendo su vértice en el centro de una esfera, intercepta sobre la superficie de dicha esfera un área igual a la de un cuadrado que tenga por lado el radio de la esfera. Unidades SI derivadas Las unidades SI derivadas se definen de forma que sean coherentes con las unidades básicas y suplementarias, es decir, se definen por expresiones algebraicas bajo la forma de productos de potencias de las unidades SI básicas y/o suplementarias con un factor numérico igual 1. Varias de estas unidades SI derivadas se expresan simplemente a partir de las unidades SI básicas y suplementarias. Otras han recibido un nombre especial y un símbolo particular. Si una unidad SI derivada puede expresarse de varias formas equivalentes utilizando, bien nombres de unidades básicas y suplementarias, o bien nombres especiales de otras unidades SI derivadas, se admite el empleo preferencial de ciertas combinaciones o de ciertos nombres especiales, con el fin de facilitar la distinción entre magnitudes que tengan las mismas dimensiones. Por ejemplo, el hertz se emplea para la frecuencia, con preferencia al segundo a la potencia menos uno, y para el momento de fuerza, se prefiere el newton metro al joule. Unidades SI derivadas expresadas a partir de unidades básicas y suplementarias. Magnitud Nombre Símbolo Superficie metro cuadrado m2 file:///D|/Programas%20Disco%20C/Archivos%20E...%20de%20Física/unidades/unidades/unidades.htm (3 de 8) [25/09/2002 15:09:27] Sistema Internacional de Unidades Volumen metro cúbico m3 Velocidad metro por segundo m/s Aceleración metro por segundo cuadrado m/s2 Número de ondas metro a la potencia menos uno m-1 Masa en volumen kilogramo por metro cúbico kg/m3 Velocidad angular radián por segundo rad/s Aceleración angular radián por segundo cuadrado rad/s2 Unidad de velocidad Un metro por segundo (m/s o m s-1) es la velocidad de un cuerpo que, con movimiento uniforme, recorre, una longitud de un metro en 1 segundo Unidad de aceleración Un metro por segundo cuadrado (m/s2 o m s-2) es la aceleración de un cuerpo, animado de movimiento uniformemente variado, cuya velocidad varía cada segundo, 1 m/s. Unidad de número de ondas Un metro a la potencia menos uno (m-1) es el número de ondas de una radiación monocromática cuya longitud de onda es igual a 1 metro. Unidad de velocidad angular Un radian por segundo (rad/s o rad s-1) es la velocidad de un cuerpo que, con una rotación uniforme alrededor de un eje fijo, gira en 1 segundo, 1 radián. Unidad de aceleración angular Un radian por segundo cuadrado (rad/s2 o rad s-2) es la aceleración angular de un cuerpo animado de una rotación uniformemente variada alrededor de un eje fijo, cuya velocidad angular, varía 1 radián por segundo, en 1 segundo. Unidades SI derivadas con nombres y símbolos especiales. Magnitud Nombre Símbolo Expresión en otras Expresión en unidades unidades SI SI básicas Frecuencia hertz Hz s-1 Fuerza newton N m kg s-2 Presión pascal Pa N m-2 m-1 kg s-2 Energía, trabajo, cantidad de calor joule J Nm m2 kg s-2 Potencia watt W J s-1 m2 kg s-3 file:///D|/Programas%20Disco%20C/Archivos%20E...%20de%20Física/unidades/unidades/unidades.htm (4 de 8) [25/09/2002 15:09:27] Sistema Internacional de Unidades Cantidad de electricidad carga eléctrica coulomb C sA Potencial eléctrico fuerza electromotriz volt V W A-1 m2 kg s-3 A-1 Resistencia eléctrica ohm Ω V A-1 m2 kg s-3 A-2 Capacidad eléctrica farad F C V-1 m-2 kg-1 s4 A2 Flujo magnético weber Wb Vs m2 kg s-2 A-1 Inducción magnética tesla T Wb m2 kg s-2 A1 Inductancia henry H Wb A-1 m2 kg s-2 A-2 Unidad de frecuencia Un hertz (Hz) es la frecuencia de un fenómeno periódico cuyo periodo es 1 segundo. Unidad de fuerza Un newton (N) es la fuerza que, aplicada a un cuerpo que tiene una masa de 1 kilogramo, le comunica una aceleración de 1 metro por segundo cuadrado. Unidad de presión Un pascal (Pa) es la presión uniforme que, actuando sobre una superficie plana de 1 metro cuadrado, ejerce perpendicularmente a esta superficie una fuerza total de 1 newton. Unidad de energía, trabajo, Un joule (J) es el trabajo producido por una fuerza de 1 newton, cantidad de calor cuyo punto de aplicación se desplaza 1 metro en la dirección de la fuerza. Unidad de potencia, flujo radiante Un watt (W) es la potencia que da lugar a una producción de energía igual a 1 joule por segundo. Unidad de cantidad de Un coulomb (C) es la cantidad de electricidad transportada en 1 electricidad, carga eléctrica segundo por una corriente de intensidad 1 ampere. Unidad de potencial eléctrico, fuerza electromotriz Un volt (V) es la diferencia de potencial eléctrico que existe entre dos puntos de un hilo conductor que transporta una corriente de intensidad constante de 1 ampere cuando la potencia disipada entre estos puntos es igual a 1 watt. file:///D|/Programas%20Disco%20C/Archivos%20E...%20de%20Física/unidades/unidades/unidades.htm (5 de 8) [25/09/2002 15:09:27] Sistema Internacional de Unidades Unidad de resistencia eléctrica Un ohm (Ω) es la resistencia eléctrica que existe entre dos puntos de un conductor cuando una diferencia de potencial constante de 1 volt aplicada entre estos dos puntos produce, en dicho conductor, una corriente de intensidad 1 ampere, cuando no haya fuerza electromotriz en el conductor. Unidad de capacidad eléctrica Un farad (F) es la capacidad de un condensador eléctrico que entre sus armaduras aparece una diferencia de potencial eléctrico de 1 volt, cuando está cargado con una cantidad de electricidad igual a 1 coulomb. Unidad de flujo magnético Un weber (Wb) es el flujo magnético que, al atravesar un circuito de una sola espira produce en la misma una fuerza electromotriz de 1 volt si se anula dicho flujo en un segundo por decaimiento uniforme. Unidad de inducción magnética Una tesla (T) es la inducción magnética uniforme que, repartida normalmente sobre una superficie de 1 metro cuadrado, produce a través de esta superficie un flujo magnético total de 1 weber. Unidad de inductancia Un henry (H) es la inductancia eléctrica de un circuito cerrado en el que se produce una fuerza electromotriz de 1 volt, cuando la corriente eléctrica que recorre el circuito varía uniformemente a razón de un ampere por segundo. Unidades SI derivadas expresadas a partir de las que tienen nombres especiales Magnitud Nombre Símbolo Expresión en unidades SI básicas Viscosidad dinámica pascal segundo Pa s m-1 kg s-1 Entropía joule por kelvin J/K m2 kg s-2 K-1 Capacidad térmica másica joule por kilogramo kelvin J(kg K) m2 s-2 K-1 Conductividad térmica watt por metro kelvin W(m K) m kg s-3 K-1 Intensidad del campo eléctrico volt por metro V/m m kg s-3 A-1 file:///D|/Programas%20Disco%20C/Archivos%20E...%20de%20Física/unidades/unidades/unidades.htm (6 de 8) [25/09/2002 15:09:27] Sistema Internacional de Unidades Unidad de viscosidad dinámica Un pascal segundo (Pa s) es la viscosidad dinámica de un fluido homogéneo, en el cual el movimiento rectilíneo y uniforme de una superficie plana de 1 metro cuadrado, da lugar a una fuerza retardatriz de 1 newton, cuando hay una diferencia de velocidad de 1 metro por segundo entre dos planos paralelos separados por 1 metro de distancia. Unidad de entropía Un joule por kelvin (J/K) es el aumento de entropía de un sistema que recibe una cantidad de calor de 1 joule, a la temperatura termodinámica constante de 1 kelvin, siempre que en el sistema no tenga lugar ninguna transformación irreversible. Unidad de capacidad térmica másica Un joule por kilogramo kelvin (J/(kg K) es la capacidad térmica másica de un cuerpo homogéneo de una masa de 1 kilogramo, en el que el aporte de una cantidad de calor de un joule, produce una elevación de temperatura termodinámica de 1 kelvin. Unidad de conductividad térmica Un watt por metro kelvin (W m/K) es la conductividad térmica de un cuerpo homogéneo isótropo, en la que una diferencia de temperatura de 1 kelvin entre dos planos paralelos, de área 1 metro cuadrado y distantes 1 metro, produce entre estos planos un flujo térmico de 1 watt. Unidad de intensidad del campo eléctrico Un volt por metro (V/m) es la intensidad de un campo eléctrico, que ejerce una fuerza de 1 newton sobre un cuerpo cargado con una cantidad de electricidad de 1 coulomb. Unidades definidas a partir de las unidades SI, pero que no son múltiplos o submúltiplos decimales de dichas unidades. Magnitud Nombre Ángulo plano vuelta Tiempo Símbolo Relación 1 vuelta= 2 π rad grado º (π/180) rad minuto de ángulo ' (π /10800) rad segundo de ángulo " (π /648000) rad minuto min 60 s hora h 3600 s día d 86400 s Unidades en uso con el Sistema Internacional cuyo valor en file:///D|/Programas%20Disco%20C/Archivos%20E...%20de%20Física/unidades/unidades/unidades.htm (7 de 8) [25/09/2002 15:09:27] Sistema Internacional de Unidades unidades SI se ha obtenido experimentalmente. Magnitud Nombre Símbolo Valor en unidades SI Masa unidad de masa atómica u 1,6605402 10-27 kg Energía electronvolt eV 1,60217733 10-19 J Múltiplos y submúltiplos decimales Factor Prefijo Símbolo Factor Prefijo Símbolo 1018 exa E 10-1 deci d 1015 penta P 10-2 centi c 1012 tera T 10-3 mili m 109 giga G 10-6 micro u 106 mega M 10-9 nano n 103 kilo k 10-12 pico p 102 hecto h 10-15 femto f 101 deca da 10-18 atto a file:///D|/Programas%20Disco%20C/Archivos%20E...%20de%20Física/unidades/unidades/unidades.htm (8 de 8) [25/09/2002 15:09:27] Errores en las medidas Errores en las medidas Unidades y medidas Sistema Internacional de Unidades Reglas para expresar una medida y su error Medidas directas Medidas indirectas Errores en las medidas La balanza Reglas para expresar una medida y su error El calibre Medida del área de una figura rectangular Toda medida debe de ir seguida por la unidad, obligatoriamente del Sistema Internacional de Unidades de medida. Cuando un físico mide algo debe tener gran cuidado para no producir una perturbación en el sistema que está bajo observación. Por ejemplo, cuando medimos la temperatura de un cuerpo, lo ponemos en contacto con un termómetro. Pero cuando los ponemos juntos, algo de energía o "calor" se intercambia entre el cuerpo y el termómetro, dando como resultado un pequeño cambio en la temperatura del cuerpo que deseamos medir. Así, el instrumento de medida afecta de algún modo a la cantidad que deseábamos medir Además, todas las medidas está afectadas en algún grado por un error experimental debido a las imperfecciones inevitables del instrumento de medida, o las limitaciones impuestas por nuestros sentidos que deben de registrar la información. 1.-Todo resultado experimental o medida hecha en el laboratorio debe de ir acompañada del valor estimado del error de la medida y a continuación, las unidades empleadas. Por ejemplo, al medir una cierta distancia hemos obtenido 297±2 mm. De este modo entendemos que la medida de dicha magnitud está en alguna parte entre 295 mm y 299 mm. En realidad, la expresión anterior no significa que se está seguro de que el valor verdadero esté entre los límites indicados, sino que hay cierta probabilidad de que esté ahí. 2.- Los errores se deben dar solamente con una única cifra significativa. Únicamente, en casos excepcionales, se pueden dar una cifra y media (la segunda cifra 5 ó 0). 3.-La última cifra significativa en el valor de una magnitud física y en su error, expresados en las mismas unidades, deben de corresponder al mismo orden de magnitud (centenas, decenas, unidades, décimas, centésimas). file:///D|/Programas%20Disco%20C/Archivos%20E...so%20de%20Física/unidades/medidas/medidas.htm (1 de 6) [25/09/2002 15:09:29] Errores en las medidas ● Expresiones incorrectas por la regla 2 24567±2928 m 23.463±0.165 cm 345.20±3.10 mm ● Expresiones incorrectas por la regla 3. 24567±3000 cm 43±0.06 m 345.2±3 m ● Expresiones correctas 24000±3000 m 23.5±0.2 cm 345±3 m 43.00±0.06 m Medidas directas Un experimentador que haga la misma medida varias veces no obtendrá, en general, el mismo resultado, no sólo por causas imponderables como variaciones imprevistas de las condiciones de medida: temperatura, presión, humedad, etc., sino también, por las variaciones en las condiciones de observación del experimentador. Si al tratar de determinar una magnitud por medida directa realizamos varias medidas con el fin de corregir los errores aleatorios, los resultados obtenidos son x1, x2, ... xn se adopta como mejor estimación del valor verdadero el valor medio <x> que viene dado por El valor medio se aproximará tanto más al valor verdadero de la magnitud cuanto mayor sea el número de medidas, ya que los errores aleatorios de cada medida se va compensando unos con otros. Sin embargo, en la práctica, no debe pasarse de un cierto número de medidas. En general, es suficiente con 10, e incluso podría bastar 4 ó 5. Cuando la sensibilidad del método o de los aparatos utilizados es pequeña comparada con la magnitud de los errores aleatorios, puede ocurrir que la repetición de la medida nos lleve siempre al mismo resultado; en este caso, está claro que el valor medio coincidirá con el file:///D|/Programas%20Disco%20C/Archivos%20E...so%20de%20Física/unidades/medidas/medidas.htm (2 de 6) [25/09/2002 15:09:29] Errores en las medidas valor medido en una sola medida, y no se obtiene nada nuevo en la repetición de la medida y del cálculo del valor medio, por lo que solamente será necesario en este caso hacer una sola medida. De acuerdo con la teoría de Gauss de los errores, que supone que estos se producen por cau